Abstract
In this work, we explore some exciting details of the time-dependent regime in long-range systems under mean-field approximation compared to the critical dynamics of the short-range systems. Firstly, we discuss some mechanisms of the initial anomalous behavior of the magnetization via two and three-dimensional Monte Carlo simulations to later compare with results from mean-field simulations in both: spin 1/2 and spin 1 (Blume–Capel) Ising models. We also investigate the distinction between critical and tricritical points and the corresponding crossover. For a complete analysis, we performed short-time simulations in the mean-field regime to determine the critical temperatures optimizing power laws and the critical exponents of the different points. We independently calculated these exponents, i.e., without using previous exponents estimates from literature/theory. Our investigations corroborate the analytical results here also developed.
This is a preview of subscription content, access via your institution.








References
S.R.A. Salinas, Introduction to Statistical Physics. (Springer-Verlag New York Inc., 2001); L.E. Reichl, A modern course in statistical physics. (Wiley-VCH, 2016)
W. F. Wreszinski, S.R.A. Salinas, Disorder and Competition in Soluble Lattice Models. (World Scientific, 1993)
J.R. Drugowich de Felício, V. Líbero, Am. J. Phys. 64, 1281 (1996)
B. Zheng, Int. J. Mod. Phys. B 12, 1419 (1998)
R. da Silva, N.A. Alves, J.R. Drugowich de Felicio, Phys. Lett. A 298, 325 (2002)
R. da Silva, N.A. Alves, J.R. Drugowich de Felicio, Phys. Rev. E 66, 026130 (2002)
R. da Silva, H.A. Fernandes, J.R. Drugowich de Felicio, W. Figueiredo, Comput. Phys. Commun. 184, 2371 (2013)
H.K. Janssen, B. Schaub, B. Schmittmann, Z. Phys. B: Condens. Matter 73, 539 (1989)
H.K. Janssen, K. Oerding, J. Phys. A: Math. Gen. 27, 715 (1994)
R. da Silva, Phys. Rev. E 105, 034114 (2022)
R. da Silva, N. Alves, Jr., J.R. Drugowich de Felicio, Phys. Rev. E 87, 012131 (2013); R. da Silva, H.A. Fernandes, J.R. Drugowich de Felicio, Phys. Rev. E 90, 042101 (2014); H.A. Fernandes, R. da Silva, J.R. Drugowich de Felicio, J. Stat. Mech. P10002 (2006)
R. da Silva, J.R. Drugowich de Felicio, A.S. Martinez, Phys. Rev. E 85, 066707 (2012)
T. Tome, M.J. Oliveira, Stochastic dynamics and irreversibility (Springer, Cham, 2015)
G.L. Batten, H.L. Lemberg, J. Chem. Phys. 70, 2934 (1979)
R. da Silva. J.R. Drugowich de Felicio, Phys. Lett. A 383, 1235 (2019); R. da Silva, N. Alves Jr., J.R. Drugowich de Felicio, Phys. Rev. E 87, 012131 (2013)
R. da Silva, M.J .de Oliveira, T. Tome, J.R. Drugowich de Felicio, Phys. Rev. E 101, 012130 (2020); H.A. Fernandes, R. da Silva, J. Stat. Mech. P053205 (2019); R. da Silva. H.A. Fernandes, J. Stat. Mech., P06011 (2015)
M. Henkel, M. Pleimling, Non-equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling far from Equilibrium. (Springer, Dordrecht, 2010)
I.D. Lawrie, S. Sarbach, in Phase Transitions and Critical Phenomena, vol. 9, ed. by C. Domb, J.L. Lebowitz, (Academic Press, London, 1984)
C. Anteneodo, E.E. Ferrero, S.A. Cannas, J. Stat. Mech., P07026 (2010)
S.N. Majumdar, C. Sire, Phys. Rev. Lett. 77, 1420 (1996); S.N. Majumdar, C. Sire, A.J. Bray, S.J. Cornell, Phys. Rev. Lett. 77, 2867 (1996)
R. da. Silva, A.L.C. Bazzan, A.T. Baraviera, S.R. Dahmen, Physica A 371 610–626 (2006); R. da Silva, M. Zembrzusky, F. Correa, L.C. Lamb, Physica A 389 5460 (2010)
R. da Silva, N.A. Alves, J.R. Drugowich de Felicio, Phys, Rev. E 67, 057102 (2003)
L. Schulke, B. Zheng, Phys. Lett. A 233, 93 (1997)
Funding
R. da Silva thanks CNPq for financial support under grant number 311236/2018-9.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Conduct
The author declares that he did not violate any ethical conduct in preparing this paper.
Conflicts of Interest
The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
da Silva, R. Exploring the Similarities Between Mean-field and Short-range Relaxation Dynamics of Spin Models. Braz J Phys 52, 128 (2022). https://doi.org/10.1007/s13538-022-01135-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13538-022-01135-2
Keywords
- Tricritical dynamics
- Crossover effects
- Time-dependent Monte Carlo simulations
- Kinetic mean-field equations