Skip to main content

Advertisement

Log in

Molecular Junctions: Introduction and Physical Foundations, Nanoelectrical Conductivity and Electronic Structure and Charge Transfer in Organic Molecular Junctions

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

There are fewer components in the nanoelectronics industry that do not use some kind of molecular junctions or interface. In general, many nanoelectronic devices have layered structures, and the behavior of the electron at the interface affects the electron properties of the final component, because the electron transfer mechanisms at the interface and multiple junctions are significantly different from the bulk material. Their junctions were studied. It was shown that to study the mechanisms of electron transfer and parameters affecting the conductivity of the junctions, various molecular junctions such as broken junctions can be used. It has been suggested that the solution temperature, shape, material, and spatial arrangement of the molecule used, the material, properties and surface nature of the metal electrodes, and the band structure of the junction’s components can affect the conductivity of these systems. Attempts have been made to introduce the salient features of each of these junctions and to discuss examples of real Nano electronic components and molecular junctions used in them. We will see that the conventional mechanisms for electron transfer in these devices strongly depend on the electronic structure of the molecules used and generally include direct tunneling, fullerene tunneling. Molecularly deals with the effects of various factors on it. controlling the conductivity of a molecular bond by changing its physical, chemical and mechanical properties and optimizing the electrical properties of the final nanoelectronic component. Organic molecular junctions, as a special form of molecular junction, are used in many organic nanoelectronic devices. Therefore, it is very important to study the nature of the interface between these junctions and their electron transfer mechanisms. Conductivity of junctions is analyzed based on the band structure of their components. Therefore, in this paper, organic molecular compounds are introduced and their electronic structure is discussed. As you will see, certain phenomena also occur in these junctions, the most important of which are the formation of organic dipoles at the interface of the organic molecule/metal and the CNL parameter. Attempts have been made to put these phenomena into plain language without addressing mathematical models and the heavy concepts of quantum physics, and to discuss their effect on charge transfer and the electronic structure of organic junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. F. Chen, J. Hihath, Z. Huang, X. Li, N.J. Tao, Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 58, 535–564 (2007)

    ADS  Google Scholar 

  2. J.R. Heath, M.A. Ratner, Molecular electronics. Phys. Today 56(5), 43 (2003). https://doi.org/10.1063/1.1583533

  3. R.M. Metzger (ed.), Unimolecular Supramolecular Electronics I: ChemistryPhysics Meet at Metal-Molecule Interfaces, Vol. 1. (Springer, 2012)

  4. M. Kiguchia, K. Murakoshi, Highly conductive single molecular junctions by direct binding of π-conjugated molecule to metal electrodes. Thin Solid Films 518, 466–469 (2009)

    ADS  Google Scholar 

  5. B. Branchi, in UnimolecularSupramolecular Electronics II: ChemistryPhysics Meet at Metal-Molecule Interfaces, vol. 2, ed. by R.R.M. Metzger (Springer, 2012)

  6. F. Léonard, A.A. Talin, Electrical contacts to one-and two-dimensional nanomaterials. Nat. Nanotechnol. 6(11), 773–783 (2011)

    ADS  Google Scholar 

  7. G. Wang, S.-I. Na, T.-W. Kim, Y. Kim, S. Park, T. Lee, Effect of PEDOT:PSS–molecule interface on the charge transport characteristics of the large-area molecular electronic junctions. Org. Electron. 13, 771–777 (2012)

    Google Scholar 

  8. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a molecular junction. Science 278(5336), 252–254 (1997)

    Google Scholar 

  9. G.C. Solomon, C. Herrmann, T. Hansen, V. Mujica, M.A. Ratner, Exploring local currents in molecular junctions. Nat. Chem. 2(3), 223–228 (2010)

    Google Scholar 

  10. N.A. Zimbovskaya, Transport Properties of Molecular Junctions (Springer, 2013)

    Google Scholar 

  11. S.W. Wu et al., Control of Relative Tunneling Rates in Single Molecule Bipolar Electron Transport. Phys. Rev. Lett. 93(23), 236–802 (2004)

    Google Scholar 

  12. E.G. Petrov, Tunneling through localized states of a single molecule. Mol. Cryst. Liq. Cryst 426(1), 49–58 (2005)

    Google Scholar 

  13. J.P. Bourgoin, Molecular Electronics: A Review of Metal-Molecule-Metal Junctions, in Interacting electrons in nanostructures, (Springer Berlin Heidelberg, 2001), pp 105-124

  14. W.Y. Kim et al., Application of quantum chemistry to nanotechnology: electronspin transport in molecular devices. Chem. Soc. Rev. 38(8), 2319–2333 (2009)

    Google Scholar 

  15. H. Vazquez, F. Flores, A. Kahn, Induced density of states model for weakly-interacting organic semiconductor interfaces. Org. Electron. 8(2), 241–248 (2007)

    Google Scholar 

  16. N.A. Zimbovskaya, Transport Properties of Molecular Junctions, vol. 254 (Springer, 2013)

  17. I.L. Aleiner, P.W. Brouwer, L.I. Glazman, Quantum effects in Coulomb blockade. Phys. Rep. 358(5), 309–440 (2002)

    ADS  Google Scholar 

  18. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Electron transport in quantum dots  , in Mesoscopic electron transport. (Springer Netherlands, 1997), pp. 105–214

    Google Scholar 

  19. S.M. Sze, The Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  20. V. Balzani (ed.), Electron transfer in chemistry, chapter 4. (Vch Verlagsgesellschaft Mbh, 2001), p. 162

  21. C. Martel, M. Plummer, J. Vignat et al., Worldwide burden of cancer attributable to HPV by site, 5Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. Cancers Head Neck 2018;3:12. country and HPV type. Int J Cancer 141:664– 670 (2017)

  22. B.S. Chera, R.J. Amdur, R. Green et al., Phase II trial of de-intensified chemoradiotherapy for human papillomavirus-associated oropharyngeal squamous cell carcinoma. J Clin Oncol 37, 2661–2669 (2019)

    Google Scholar 

  23. S. Cheraglou, P.K. Yu, M.D. Otremba et al., Treatment deintensification in human papillomavirus-positive oropharynx cancer: outcomes from the National Cancer Data Base. Cancer 124, 717–726 (2018)

    Google Scholar 

  24. H. Li, S.J. Torabi, W.G. Yarbrough et al., Association of human papillomavirus status at head and neck carcinoma subsites with overall survival. JAMA Otolaryngol Head Neck Surg 144, 519–525 (2018)

    Google Scholar 

  25. M.L. Gillison, A.M. Trotti, J. Harris et al., Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Onclogy RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 393, 40–50 (2019)

    Google Scholar 

  26. F.O. Gleber-Netto, X. Rao, T. Guo et al., Variations in HPV function are associated with survival in squamous cell carcinoma. JCI Insight 4, pii: 124762 (2019)

    Google Scholar 

  27. I. Paiva, R.M. Gil da Costa, J. Ribeiro et al., A role for microRNA-155 expression in microenvironment associated to HPV-induced carcinogenesis in K14-HPV16 transgenic mice. PLoS One 10, e0116868 (2015)

    Google Scholar 

  28. I. Paiva, R.M. Gil da Costa, J. Ribeiro et al., MicroRNA-21 expression and susceptibility to HPVinduced carcinogenesis – role of microenvironment in K14-HPV16 mice model. Life Sci 128, 8–14 (2015)

    Google Scholar 

  29. V.F. Mestre, B. Medeiros-Fonseca, D. Estêvão, F. Casaca, S. Silva, A. Félix, F. Silva, B. Colaço, F. Seixas, M.M. Bastos, C. Lopes, R. Medeiros, P.A. Oliveira, R.M. Gil da Costa, HPV16 is sufficient to induce squamous cell carcinoma specifically in the tongue base in transgenic mice. J. Pathol. 251, 4–11 (2020). https://doi.org/10.1002/path.5387

    Article  Google Scholar 

  30. Z. Robison, J.P. Mosele, A. Gross, S. Lynch, Numerical Investigation of Turbulent Junction Flows. AIAA Journal 1–18 (2021)

  31. C.L. Rumsey, J.R. Carlson, T.H. Pulliam, P.R. Spalart, Improvements to the quadratic constitutive relation based on nasa juncture flow data. AIAA Journal 58(10), 4374–4384 (2020)

    ADS  Google Scholar 

  32. I. Hnid, D. Frath, F. Lafolet, X. Sun, J.C. Lacroix, Highly efficient photoswitch in diarylethene-based molecular junctions. Journal of the American Chemical Society 142(17), 7732–7 (2020)

  33. K. Wang, E. Meyhofer, P. Reddy, Thermal and thermoelectric properties ofmolecular junctions. Adv. Funct. Mater. 30(8), 1904534 (2020)

    Google Scholar 

  34. M.W. Gu, H.H. Peng, I.W.P. Chen, C.H. Chen, Tuning surface d bands withbimetallic electrodes to facilitate electron transport across molecular junctions. Nature Materials 20(5), 658–664 (2021)

    ADS  Google Scholar 

  35. S. Gunasekaran, J.E. Greenwald, L. Venkataraman, Visualizing quantuminterference in molecular junctions. Nano letters 20(4), 2843–2848 (2020)

    ADS  Google Scholar 

  36. S.K. Karuppannan, E.H.L. Neoh, A. Vilan, C.A. Nijhuis, Protective layers based on carbon paint to yield high-quality large-area molecular junctions with low contact resistance. J. Am. Chem. Soc. 142(7), 3513–3524 (2020)

    Google Scholar 

  37. M. Supur, S.K. Saxena, R.L. McCreery, Ion-Assisted Resonant Injection andCharge Storage in Carbon-Based Molecular Junctions. J. Am. Chem. Soc. 142(27), 11658–11662 (2020)

    Google Scholar 

  38. Q. Van Nguyen, U. Tefashe, P. Martin, M.L. Della Rocca, F. Lafolet, P. Lafarge, J.C. Lacroix, Molecular signature and activationless transport in cobalt-terpyridine-basedmolecular junctions. Adv. Electron. Mater. 6(7), 1901416 (2020)

    Google Scholar 

  39. R.B. Pontes, A.R. Rocha, S. Sanvito, A. Fazzio, A.J. da Silva, Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano 5(2), 795–804 (2011). https://doi.org/10.1021/nn101628w (Epub 2011 Jan 12. PMID: 21226481)

  40. M. Salimi, V. Pirouzfar, E. Kianfar, Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid. Polym. Sci. 295, 215–226 (2017). https://doi.org/10.1007/s00396-016-3998-0

    Article  Google Scholar 

  41. E. Kianfar, Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 91, 1711–1720 (2018). https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  42. E. Kianfar, Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russ. J. Appl. Chem. 92, 1094–1101 (2019). https://doi.org/10.1134/S1070427219080068

    Article  Google Scholar 

  43. E. Kianfar, Ethylene to propylene over zeolite ZSM-5: improved catalyst performance bytreatment with CuO. Russ. J. Appl. Chem. 92, 933–939 (2019). https://doi.org/10.1134/S1070427219070085

    Article  Google Scholar 

  44. E. Kianfar, M. Shirshahi, F. Kianfar et al., Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. Silicon 10, 2617–2625 (2018). https://doi.org/10.1007/s12633-018-9798-z

    Article  Google Scholar 

  45. M. Salimi, V. Pirouzfar, E. Kianfar, Novel nanocomposite membranes prepared withPVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym. Sci. Ser. A 59, 566–574 (2017). https://doi.org/10.1134/S0965545X17040071

    Article  Google Scholar 

  46. F. Kianfar, E. Kianfar, Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J. Inorg. Organomet. Polym. 29, 2176–2185 (2019). https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  47. E. Kianfar, R. Azimikia, S.M. Faghih, Simple and strong dative attachment of α-diiminenickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catal Lett 150, 2322–2330 (2020). https://doi.org/10.1007/s10562-020-03116-z

    Article  Google Scholar 

  48. E. Kianfar, Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4

    Article  Google Scholar 

  49. H. Liu, E. Kianfar, Investigation the synthesis of nano-SAPO-34 catalyst prepared by differenttemplates for MTO process. Catal Lett (2020). https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  50. E. Kianfar, M. Salimi, S. Hajimirzaee, B. Koohestani, Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng. 17(2018)

  51. E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis of modified catalyst andstabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int J Appl Ceram Technol. 15, 734–741 (2018). https://doi.org/10.1111/ijac.12830

    Article  Google Scholar 

  52. E. Kianfar, M. Salimi, V. Pirouzfar, B. Koohestani, Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. React. Eng. 16(7), 20170229 (2018). https://doi.org/10.1515/ijcre-2017-0229

    Article  Google Scholar 

  53. E. Kianfar, Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 39, 157–177 (2019)

    Google Scholar 

  54. E. Kianfar, M. Salimi, A review on the production of light olefins from hydrocarbons cracking and methanol conversion, in book: Advances in Chemistry Research, vol. 59, chapter 1, ed by J.C. Taylor (Publisher: Nova Science Publishers, Inc., NY, USA, 2020)

  55. E. Kianfar, A. Razavi, Zeolite catalyst based selective for the process MTG: A review, in book: Zeolites: Advances in Research and Applications, chapter: 8, ed. A. Mahler (Publisher: Nova Science Publishers, Inc., NY, USA, 2020)

  56. E. Kianfar, Zeolites: Properties, Applications, Modification and Selectivity, in book: Zeolites: Advances in Research and Applications, chapter: 1, ed. A. Mahler (Publisher: Nova Science Publishers, Inc., NY, USA, 2020)

  57. E. Kianfar, S. Hajimirzaee, S.S. Musavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J. 104822 (2020)

  58. E. Kianfar, M. Baghernejad, Y. Rahimdashti, Study synthesis ofvanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum. 7, 1671–1685 (2015)

    Google Scholar 

  59. E. Kianfar, Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method (Publisher: Lambert Academic Publishing, 2020), pp. 1–80. ISBN: 978-613-9-81541-8

  60. E. Kianfar, V. Pirouzfar, H. Sakhaeinia, An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng. 80, 954–962 (2017)

    Google Scholar 

  61. E. Kianfar, C. Viet, Polymeric membranes on base of polymethyl methacrylate forair separation: a review. J. Mater. Res. Technol. 10, 1437–1461 (2021)

    Google Scholar 

  62. S. Nmousavian, P. Faravar, Z. Zarei, R. Zimikia, M.G. Monjezi, E. Kianfar, Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng. 8(4), 103946 (2020)

  63. Z. Yang, L. Zhang, Y. Zhou, H. Wang, L. Wen, E. Kianfar, Investigation of effective parameters on SAPO-34 nano catalyst the methanol-toolefin conversion process: A review. Rev. Inorg. Chem. 40(3), 91–105 (2020)

    Google Scholar 

  64. C. Gao, J. Liao, L. Jingqiong, J. Ma, E. Kianfar, The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev. Inorg. Chem. (2020). https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  65. E. Kianfar, M. Salimi, B. Koohestani, Zeolite catalyst: a review on the production of light olefins, (Publisher: Lambert Academic Publishing, 2020) p. 1-116. ISBN: 978-620-3-04259-7

  66. E. Kianfar, Investigation on catalysts of “methanol to light olefins”, (Publisher: Lambert Academic Publishing, 2020) p. 1-168. ISBN: 978-620-3-19402-9

  67. E. Kianfar, Application of nanotechnology in enhanced recovery oil and gas. Importance & Applications of Nanotechnology, 5, Chapter 3 (MedDocs Publishers, 2020), p. 16-21

  68. E. Kianfar, Catalytic properties of nanomaterials and factors affecting it . Importance & Applications of Nanotechnology, 5, Chapter 4, (MedDocs Publishers, 2020), p. 22-25

  69. E. Kianfar, Introducing the application of nanotechnology in lithium-ion battery. Importance & Applications of Nanotechnology, 4, Chapter 4, (MedDocs Publishers, 2020), p. 1-7

  70. E. Kianfar, H. Mazaheri, Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chemical Engineering 1, 83–91 (2020)

  71. E. Kianfar, M. Salimi, B. Koohestani, Methanol to gasoline conversionover CuO / ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chemical Engineering 1, 75–82 (2020)

    Google Scholar 

  72. E. Kianfar, An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chemical Engineering 1, 92–103 (2020)

    Google Scholar 

  73. Ehsan Kianfar; Sajjad Mafi, E. Kianfar, S. Mafi, Ionic liquids: properties, application, and synthesis. FineChemical Engineering 2, 22–31 (2020)

    Google Scholar 

  74. S.M. Faghih, E. Kianfar, Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. Int. J. Chem. React. Eng. 16, 1–14 (2018)

    Google Scholar 

  75. E. Kianfar, H. Mazaheri, Methanol to gasoline: a sustainable transport fuel, in book: Advances in Chemistry Research, chapter: 4, ed. by J.C. Taylor (Publisher: Nova Science Publishers, Inc., NY, USA, 2020), p. 66

  76. Kianfar, A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: a review, in Advances in Chemistry Research, chapter 2 (NewYork: Nova Science Publishers, Inc., 2020), p. 63

  77. E. Kianfar, M. Salimi, F. Kianfar et al., CO2/N2 separation using polyvinyl chloride isophthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res. 27, 83–89 (2019). https://doi.org/10.1007/s13233-019-7009-4

    Article  Google Scholar 

  78. E. Kianfar, Synthesis of characterization Nanoparticles isophthalic acid / aluminum nitrate (CAU-10-H) using method hydrothermal, in Advances in Chemistry Research, (Nova Science Publishers, Inc., NY, USA, 2020)

  79. E. Kianfar, CO2 capture with ionic liquids: a review, in Advances in Chemistry Research, vol. 67 (Publisher: Nova Science Publishers, Inc., NY, USA, 2020)

  80. E. Kianfar, Enhanced light olefins production via methanol dehydration over promoted SAPO-34, in Advances in Chemistry Research, chapter: 4 (Nova Science Publishers, Inc., NY, USA, 2020), p. 63

  81. E. Kianfar, Gas hydrate: applications, structure, formation, separation processes, Thermodynamics, in Advances in Chemistry Research, chapter: 8, ed. J.C. Taylor (Publisher: Nova Science Publishers, Inc., NY, USA, 2020), p. 62

  82. M. Kianfar, F. Kianfar, E. Kianfar, The effect of nano-composites on themechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies 4(1), 29–44 (2016)

    Google Scholar 

  83. F. Kianfar, S.R.M. Moghadam, E. Kianfar, Energy Optimization of Ilam Gas Refinery Unit 100 by using HYSYS Refinery Software (2015). Indian J. Sci. Technol. 8(S9), 431–436 (2015)

    Google Scholar 

  84. E. Kianfar, Production and identification of vanadium oxide nanotubes. Indian J. Sci. Technol. 8(S9), 455–464 (2015)

    Google Scholar 

  85. F. Kianfar, S.R.M. Moghadam, E. Kianfar, Synthesis of Spiro Pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian J. Sci. Technol. 8(11), 68669 (2015)

    Google Scholar 

  86. E. Kianfar, Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchem. J. 145, 966–978 (2019)

    Google Scholar 

  87. S. Hajimirzaee, A. Soleimani Mehr, E. Kianfar, Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycycl. Aromat. Compd. (2020). https://doi.org/10.1080/10406638.2020.1833048

  88. E. Kianfar, Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Pet. Chem. 61, 527–537 (2021). https://doi.org/10.1134/S0965544121050030

    Article  Google Scholar 

  89. X. Huang, Y. Zhu, E. Kianfar, Nano biosensors: properties, applicationsand Electrochemical Techniques. J. Mater. Res. Technol. 12, 1649–1672 (2021). https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  Google Scholar 

  90. E. Kianfar, Protein nanoparticles in drug delivery: animal protein, plant proteins and proteincages, albumin nanoparticles. J. Nanobiotechnol. 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3

    Article  Google Scholar 

  91. E. Kianfar, Magnetic nanoparticles in targeted drug delivery: a review. J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  92. R. Syah, M. Zahar, E. Kianfar, Nanoreactors: properties, applicationsand characterization. Int. J. Chem. React. Eng. (2021). https://doi.org/10.1515/ijcre-2021-0069

    Article  Google Scholar 

  93. I. Raya, H.H. Kzar, Z.H. Mahmoud, A. Al Ayub Ahmed, A.Z. Ibatova, E. Kianfar, A review of gas sensors based on carbon nanomaterial. Carbon Letters (2021). https://doi.org/10.1007/s42823-021-00276-9

    Article  Google Scholar 

  94. Y. Sun, Y. Yang, X. Shi, G. Suo, H. Chen, X. Hou, ..., Z. Chen, Self-standingfilm assembled using SnS–Sn/multiwalled carbon nanotubes encapsulated carbon fibers: apotential large-scale production material for ultra-stable sodium-ion battery anodes. ACS Appl. Mater. Interfaces 13(24), 28359–28368 (2021). https://doi.org/10.1021/acsami.1c07152

    Article  Google Scholar 

  95. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ionbattery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  96. X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Carbon-coated porousaluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ionbatteries. Advanced materials (Weinheim) 28(45), 9979–9985 (2016). https://doi.org/10.1002/adma.201603735

    Article  Google Scholar 

  97. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, ..., H. Cheng, Reversiblecalcium alloying enables a practical room-temperature rechargeable calcium-ion battery with ahigh discharge voltage. Nat. Chem. 10(6), 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  98. Z. Zhang, R. Xun, L. Wang, Z. Meng, Construction of pseudocapacitive Li.sub.2-xLa.sub.xZnTi.sub.3O.sub.8 anode for fast and super-stable lithium storage. Ceram. Int. 47(1), 62 (2021). https://doi.org/10.1016/j.ceramint.2020.08.174

  99. C. He, H. Wang, L. Fu, J. Huo, Z. Zheng, C. Zhao, ..., M. An, Principles fordesigning CO2 adsorption catalyst: Serving thermal conductivity as the determinant forreactivity. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.09.049

    Article  Google Scholar 

  100. L. Li, Y. Shan, F. Wang, X. Chen, Y. Zhao, D. Zhou, ..., W. Cui, Improvingfast and safe transfer of lithium ions in solid-state lithium batteries by porosity and channelstructure of polymer electrolyte. ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c11489

    Article  Google Scholar 

  101. L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, ..., L. Zhang, A JanusFe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 59(27), 10888–10893 (2020). https://doi.org/10.1002/anie.202003518

    Article  Google Scholar 

  102. L. Jiang, Y. Wang, X. Wang, F. Ning, S. Wen, Y. Zhou, ..., F. Zhou, Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Compos. Part A Appl. Sci. Manuf. 147(106461)(2021). https://doi.org/10.1016/j.compositesa.2021.106461

  103. W. Yan, K. Liang, Z. Chi, T. Liu, M. Cao, S. Fan, ..., J. Su, Litchi-likestructured MnCo2S4@C as a high capacity and long-cycling time anode for lithium-ionbatteries. Electrochim. Acta 376, 138035 (2021). https://doi.org/10.1016/j.electacta.2021.138035

  104. R. Syah, M. Zahar, E. Kianfar, Nanoreactors: properties, applications and characterization. Int J Chem React Eng 19(10), 981–1007 (2021). https://doi.org/10.1515/ijcre-2021-0069

    Article  Google Scholar 

  105. T.C. Chen, R. Rajiman, M. Elveny, J.W.G. Guerrero, A.I. Lawal, N.K.A. Dwijendra, ..., Y. Zhu, Engineering of novel Fe-based bulk metallic glasses using a machine learning-based approach. Arab. J. Sci. Eng. 46(12), 12417–12425 (2021)

    Google Scholar 

  106. C. Fu, A. Rahmani, W. Suksatan, S.M. Alizadeh, M. Zarringhalam, S. Chupradit, D. Toghraie, Comprehensive investigations of mixed convection of Fe–ethylene-glycolnanofluid inside an enclosure with different obstacles using lattice Boltzmann method. Sci. Rep. 11(1), 1–16 (2021)

    Google Scholar 

  107. T. Tjahjono, M. Elveny, S. Chupradit, D. Bokov, H.T. Hoi, M. Pandey, Role of cryogenic cycling rejuvenation on flow behavior of ZrCuAlNiAg metallic glass at relaxation temperature. Trans. Indian Inst. Metals , 1–17 (2021)

  108. S.G. Al-Shawi, N. Andreevna Alekhina, S. Aravindhan, L. Thangavelu, A. Elena, N. Viktorovna Kartamysheva, R. Rafkatovna Zakieva, Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum Dots/NiO nanocomposites for antibacterial application. Journal of Nanostructures 11(1), 181–188 (2021)

    Google Scholar 

  109. S. Hutapea, S. Ghazi Al-Shawi, T.C. Chen, X. You, D. Bokov, W.K. Abdelbasset, W. Suksatan, Study on food preservation materials based on nano-particle reagents. Food Science and Technology (2021)

  110. M.A. Sina, M.A. Adeel, Assessment of stand-alone photovoltaic system and mini-grid solar system as solutions to electrification of remote villages in Afghanistan. International Journal of Innovative Research and Scientific Studies 4(2), 92–99 (2021). https://doi.org/10.53894/ijirss.v4i2.62

    Article  Google Scholar 

  111. Y.-P. Xu, P. Ouyang, S.-M. Xing, L.Y. Qi, H. Jafari, Optimal structuredesign of a PV/FC HRES using amended Water Strider Algorithm. Energy Rep. 7, 2057–2067 (2021). https://doi.org/10.1016/j.egyr.2021.04.016

    Article  Google Scholar 

  112. J. Khan, S. Norfarhani, R.K. Sahu, S. Ruhi, M. Kaleemullah, S. Al-Dhalli, E. Yusuf, Development and evaluation of topical emulgel of aspirin using different polymericbases. Res. J. Pharm. Technol. 13(12), 6300–6304 (2020)

    Google Scholar 

  113. Z. Othman, H.R.H. Khalep, A.Z. Abidin, H. Hassan, S. Fattepur, The Anti-Angiogenic Properties of Morinda citrifolia. L (Mengkudu) Leaves using chicken chorioallantoic membrane (CAM) assay. Pharmacognosy Journal 11(1), (2019)

  114. S. Mazraedoost, R. Masoumzade, Z. Javidi, Y. Ashoori, The role of nanoparticles for reactive oxygen species (ROS) in biomedical engineering. Advances in Applied NanoBio-Technologies 2(4), 24–36 (2021)

    Google Scholar 

Download references

Acknowledgements

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran. Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ehsan kianfar.

Ethics declarations

Ethics Approval and Consent to Participate

Saade Abdalkareem Jasim, Mustafa M. Kadhim, Venu KN, Indah Raya: investigation, concept and design, experimental studies, writing—original draft, reviewing and editing. Sarah Jawad Shoja, Wanich Suksatan, Muneam Hussein Ali, Ehsan kianfar: investigation, concept and design, data curation, conceptualization, writing—original draft, reviewing, and editing.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, S.A., Kadhim, M.M., KN, V. et al. Molecular Junctions: Introduction and Physical Foundations, Nanoelectrical Conductivity and Electronic Structure and Charge Transfer in Organic Molecular Junctions. Braz J Phys 52, 31 (2022). https://doi.org/10.1007/s13538-021-01033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01033-z

Keywords

Navigation