Skip to main content

Advertisement

Log in

Role of Temperature in the Alpha Decay Studies of Heavy and Superheavy Nuclei

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2022

This article has been updated

Abstract

The decay half-lives of heavy and superheavy isotopes in the range \(Z=84\hbox{-}118\) are studied with the Cubic plus Proximity(CPP) model by incorporating the thermal effects. The influence of thermal effects on nuclear properties and potential parameters is studied systematically. It comes out that, incorporating temperature leads to an increase in the nuclear radii, reduction in the value of surface energy coefficient, and increases in the nuclear surface width. Also, the signature of neutron magicity is seen to get reflected in the nuclear surface energy coefficient and nuclear surface width. The change in barrier width and height brings out significant changes in tunneling probability and half-life values. The temperature-independent and temperature-dependent interaction potentials are used for half-life calculations, and the values are compared with experimental data and the estimated values of Universal Decay Law. The temperature-dependent cubic plus proximity model calculations of alpha decay half-lives give the lowest root mean square error and exhibit good predictive power in the heavy and superheavy regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. S. Hofmann, New elements \(\alpha\) - approaching Z=114. Rep. Prog. Phys. 61(6), 639–689 (1998)

    Article  ADS  Google Scholar 

  2. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000)

    Article  ADS  Google Scholar 

  3. J. Wauters, N. Bijnens, P. Dendooven, M. Huyse, H.Y. Hwang, G. Reusen, J. von Schwarzenberg, P. Van Duppen, R. Kirchner, E. Roeckl, Fine structure in the alpha decay of even-even nuclei as an experimental proof for the stability of the Z=82 magic shell at the very neutron-deficient side. Phys. Rev. Lett 72, 1329–1332 (1994)

    Article  ADS  Google Scholar 

  4. Z. M. Wang, R. Chapman, X. Liang, F. Haas, M. Bouhelal, F. Azaiez, B. R. Behera, M. Burns, E. Caurier, L. Corradi, D. Curien, A. N. Deacon, Z. Dombrádi, E. Farnea, E. Fioretto, A. Gadea, A. Hodsdon, F. Ibrahim, A. Jungclaus, K. Keyes, V. Kumar, A. Latina, N. Mărginean, G. Montagnoli, D. R. Napoli, F. Nowacki, J. Ollier, D. O’Donnell, A. Papenberg, G. Pollarolo, M.-D. Salsac, F. Scarlassara, J. F. Smith, K. M. Spohr, M. Stanoiu, A. M. Stefanini, S. Szilner, M. Trotta, D. Verney, Intruder negative-parity states of neutron-rich \(^{33}\rm Si\). Phys. Rev. C 81, 064301 (2010)

  5. Y. Qian, Z. Ren, Systematic calculations on exotic \(\alpha\)-decay half-lives of nuclei with N=125, 126, 127. Nucl. Phys. A 852(1), 82–91 (2011)

    Article  ADS  Google Scholar 

  6. M. Ismail, A. Y. Ellithi, M. M. Botros, A. Adel, Systematics of \(\alpha\)-decay half-lives around shell closures. Phys. Rev. C 81, 024602 (2010)

  7. G.A. Gamow, Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204–212 (1928)

    Article  ADS  Google Scholar 

  8. R.W. Gurney, E.U. Condon, Wave Mechanics and Radioactive Disintegration. Nature 122(3073), 439 (1928)

    Article  ADS  Google Scholar 

  9. A.Andreyev, M.Huyse, et al., Signatures of the Z = 82 shell closure in alpha-decay process. Phys. Rev. Lett. 110(24), 242502 (2013)

  10. Y.T. Oganessian, A.V. Yeremin, A.G. Popeko, S.L. Bogomolov, G.V. Buklanov, M.L. Chelnokov, V.I. Chepigin, B.N. Gikal, V.A. Gorshkov, G.G. Gulbekian, M.G. Itkis, A.P. Kabachenko, A.Y. Lavrentev, O.N. Malyshev, J. Rohac, R.N. Sagaidak, S. Hofmann, S. Saro, G. Giardina, K. Morita, Synthesis of nuclei of the superheavy element 114 in reactions induced by \(^{48}\)Ca. Nature 400(6741), 242–245 (1999)

    Article  ADS  Google Scholar 

  11. Y. T. Oganessian, V. K. Utyonkoy, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Experiments on the synthesis of element 115 in the reaction \(^{243}\rm Am(^{48}\rm Ca\rm , xn)^{291-x}115\). Phys. Rev. C 69, 021601 (2004)

  12. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Measurements of cross sections for the fusion-evaporation reactions \(^{244}\rm Pu {{(^{48}\rm Ca}, xn) ^{292-x}114 and ^{245}\rm Cm}{(^{48}\rm Ca}, xn) ^{293-x}116\). Phys. Rev. C 69, 054607 (2004)

  13. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S.Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K.Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Il’kaev, S.P. Vesnovskii, Publisher’s note: Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions \(^{233,238} \mathit{U},\;^{242} \mathit{Pu}\), and \(^{248} \mathit{Cm} +^{48} \mathit{Ca}\) [\(\mathrm{Phys}\). \(\mathrm{Rev}\). \(\mathrm{C}\) 70, 064609 (2004)]. Phys. Rev. C 71, 029902 (2005)

  14. Y. T. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis, A. N. Polyakov, Y. S. Tsyganov, A. N. Mezentsev, A. V. Yeremin, A. A. Voinov, E. A. Sokol, G. G. Gulbekian, S. L. Bogomolov, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, S. V. Shishkin, V. I. Chepygin, G. K. Vostokin, N. V. Aksenov, M. Hussonnois, K. Subotic, V. I. Zagrebaev, K. J. Moody, J. B. Patin, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, H. W. Gäggeler, D. Schumann, H. Bruchertseifer, R. Eichler, Synthesis of elements 115 and 113 in the reaction \(^{243} Am+^{48} Ca\). Phys. Rev. C 72, 034611 (2005)

  15. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, R. W. Lougheed, Synthesis of the isotopes of elements 118 and 116 in the \(^{249}\rm Cf\) and \(^{245} Cm +^{48} Ca\) fusion reactions. Phys. Rev. C 74, 044602 (2006)

  16. S. Hofmann, D. Ackermann, S. Antalic, H.G. Burkhard, V.F. Comas, R. Dressler, Z. Gan, S. Heinz, J.A. Heredia, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, A.G. Popeko, S. Saro, H.J. Schött, B. Streicher, B. Sulignano, J. Uusitalo, M. Venhart, A.V. Yeremin, The reaction \(^{48}\)Ca + \(^{238}\)U → \(^{286}\)112\(^{*}\) studied at the GSI-SHIP. Eur. Phys. J. A 32(3), 251–260 (2007)

    Article  ADS  Google Scholar 

  17. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, R. A. Henderson, J. M. Kenneally, J. H. Landrum, K. J. Moody, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, Synthesis of the isotope \({}^{282}113\) in the \(^{237} Np+^{48} Ca\) fusion reaction. Phys. Rev. C 76, 011601 (2007)

  18. K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, H. Kudo, T. Ohnishi, A. Ozawa, N. Sato, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, A. Yoshida, Observation of second decay chain from \(^{278}\)113. J. Phys. Soc. Jpn 76(4), 045001 (2007)

  19. J. C. Pei, F. R. Xu, Z. J. Lin, E. G. Zhao, \(\alpha\)-decay calculations of heavy and superheavy nuclei using effective mean-field potentials. Phys. Rev. C 76, 044326 (2007)

  20. A.N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. Heßberger, S. Hofmann, M. Huyse, A. Keenan, H. Kettunen, A. Kleinböhl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Münzenberg, C. Moore, C.D. O’Leary, R.D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. Taylor, P. Van Duppen, L. Weissman, R. Wyss, Alpha decay of the new isotopes \(^{188,189}\)Po. Eur. Phys. J. A 6(4), 381–385 (1999)

    Article  ADS  Google Scholar 

  21. A. Daei-Ataollah, O. N. Ghodsi, M. Mahdavi, Proximity potential and temperature effects on \(\alpha\)-decay half-lives. Phys. Rev. C 97, 054621 (2018)

  22. Y. T. Oganessian, V. K. Utyonkov, Super-heavy element research. Rep. Prog. Phys. 78(3), 036301 (2015)

  23. Y.T. Oganessian, V. Utyonkov, Y. Lobanov, F. Abdullin, A. Polyakov, I. Shirokovsky, Y. Tsyganov, G. Gulbekian, S. Bogomolov, B. Gikal, A. Mezentsev, S. Iliev, V. Subbotin, A. Sukhov, A. Voinov, G. Buklanov, K. Subotic, V. Zagrebaev, M. Itkis, J. Patin, K. Moody, J. Wild, M. Stoyer, N. Stoyer, D. Shaughnessy, J. Kenneally, R. Lougheed, Heavy element research at dubna. Nucl. Phys. A 734, 109–123 (2004)

    Article  ADS  Google Scholar 

  24. J. Błocki, J. Randrup, W.J. Świaţecki, C.F. Tsang, Proximity forces. Ann. Phys. 105(2), 427–462 (1977)

    Article  ADS  Google Scholar 

  25. R. Gharaei, S. Mohammadi, Study of the surface energy coefficient used in nuclear proximity potential of the \(\alpha\)-nuclei systems from density-dependent nucleon-nucleon interactions. Eur. Phys. J. A 55(7), 119 (2019)

    Article  ADS  Google Scholar 

  26. B. Buck, A.C. Merchant, S.M. Perez, Recent developments in the theory of alpha decay. Mod. Phys. Lett. A 06(27), 2453–2461 (1991)

    Article  ADS  Google Scholar 

  27. D. Ni, Z. Ren, New approach for \(\alpha\)-decay calculations of deformed nuclei. Phys. Rev. C 81, 064318 (2010)

  28. D. Ni, Z. Ren, Binding energies, \(\alpha\)-decay energies, and \(\alpha\)-decay half-lives for heavy and superheavy nuclei. Nucl. Phys. A 893, 13–26 (2012)

    Article  ADS  Google Scholar 

  29. G. Royer, B. Remaud, Fission processes through compact and creviced shapes. J. Phys. G: Nucl. Part. Phys. 10(8), 1057–1070 (1984)

    Article  ADS  Google Scholar 

  30. X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, J. Q. Li, Half-lives of cluster radioactivity with a generalized liquid-drop model. J. Phys. G: Nucl. Part. Phys. 39(9), 095103 (2012)

  31. V. Y. Denisov, H. Ikezoe, \(\alpha\)-nucleus potential for \(\alpha\)-decay and sub-barrier fusion. Phys. Rev. C 72, 064613 (2005)

  32. V. Y. Denisov, A. A. Khudenko, \(\alpha\) decay of even-even superheavy elements. Phys. Rev. C 81, 034613 (2010) 

  33. H. Zhang, W. Zuo, J. Li, G. Royer, \(\alpha\) decay half-lives of new superheavy nuclei within a generalized liquid drop model. Phys. Rev. C 74, 017304 (2006)

  34. H. F. Zhang, G. Royer, Theoretical and experimental \(\alpha\) decay half-lives of the heaviest odd Z elements and general predictions. Phys. Rev. C 76, 047304 (2007)

  35. G.L. Zhang, Y.J. Yao, M.F. Guo, M.Pan, G.X. Zhang, X.X. Liu, Comparative studies for different proximity potentials applied to large cluster radioactivity of nuclei. Nucl. Phys. A 951, 86–96 (2016)

  36. D.N. Poenaru, I.H. Plonski, R.A. Gherghescu, W. Greiner, Valleys due to Pb and Sn on the potential energy surface of superheavy and lighter alpha-emitting nuclei. J. Phys. G: Nucl. Part. Phys. 32, 1223–1239 (2006)

    Article  ADS  Google Scholar 

  37. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Nuclear inertia and the decay modes of superheavy nuclei. J. Phys. G: Nucl. Part. Phys. 40(10), 105105 (2013)

  38. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Simple relationships for \(\alpha\)-decay half-lives. J. Phys. G: Nucl. Part. Phys. 39(1), 015105 (2011)

  39. D. N. Poenaru, R. A. Gherghescu, W. Greiner, Heavy-particle radioactivity of superheavy nuclei. Phys. Rev. Lett. 107, 062503 (2011)

  40. D. N. Poenaru, R. A. Gherghescu, N. Carjan, Alpha-decay lifetimes semiempirical relationship including shell effects. Europhys. Lett. 77(6), 62001 (2007)

  41. D. N. Poenaru, R. A. Gherghescu, Cluster preformation at the nuclear surface in cold fission. Europhys. Lett. 118(2), 22001 (2017)

  42. D. N. Poenaru, R. A. Gherghescu, Spontaneous fission of the superheavy nucleus \(^{286}\rm Fl\). Phys. Rev. C 94, 014309 (2016)

  43. D. N. Poenaru, R. A. Gherghescu, Fission decay of \(^{282}\)Cn studied using cranking inertia. J. Phys. G: Nucl. Part. Phys. 41(12), 125104 (2014)

  44. D.N. Poenaru, Nuclear Decay Modes (Institute of Physics Pub, Bristol; Philadelphia, 1996)

    Google Scholar 

  45. D.N. Poenaru, R.A. Gherghescu, Alpha decay and cluster radioactivity of super heavy nuclei \(^{303,304}\)120. Europhys. Lett. 124(5), 52001 (2018)

    Article  ADS  Google Scholar 

  46. D.N. Poenaru, R.A. Gherghescu, Light fragment preformation in cold fission of \(^{282}\)Cn. Eur. Phys. J. A 52(11), 349 (2016)

    Article  ADS  Google Scholar 

  47. I. Dutt, R.K. Puri, Analytical parametrization of fusion barriers using proximity potentials. Phys. Rev. C 81(2010)

    Article  ADS  Google Scholar 

  48. I. Dutt, R. K. Puri, Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 81, 064609 (2010)

  49. I. Dutt, R. K. Puri, Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Phys. Rev. C 81, 047601 (2010)

  50. I. Dutt, The role of various parameters used in proximity potential in heavy-ion fusion reactions: New extension. Pramana J. Phys. 76(6), 921–931 (2011)

    Article  ADS  Google Scholar 

  51. K.P. Santhosh, I. Sukumaran, B. Priyanka, Theoretical studies on the alpha decay of \(^{178-220}\)Pb isotopes. Nucl. Phys. A 935, 28–42 (2015)

    Article  ADS  Google Scholar 

  52. K.P. Santhosh, C. Nithya, Predictions on the modes of decay of even Z superheavy isotopes within the range \(104 \le \text{Z} \le 136\) At. Data Nucl. Data Tables 119, 33 (2018)

    Article  ADS  Google Scholar 

  53. K.P. Santhosh, C. Nithya, Predictions on the modes of decay of odd Z superheavy isotopes within the range \(105 \le \text{ Z } \le 135\) At. Data Nucl. Data Tables 121–122, 216 (2018)

    Article  ADS  Google Scholar 

  54. F. Ghorbani, S. Alavi, V. Dehghani, Temperature dependence of the alpha decay half-lives of even-even Th isotopes. Nucl. Phys. A 1002, 121947 (2020)

  55. V. Zanganeh, N. Wang, Temperature-dependent potential in alpha-decay process. Nucl. Phys. A 929, 94–101 (2014)

    Article  ADS  Google Scholar 

  56. V. Zanganah, D. T. Akrawy, H. Hassanabadi, S. Hosseini, S. Thakur, Calculation of \(\alpha\)-decay and cluster half-lives for \(^{197-226}\rm Fr\) using temperature-dependent proximity potential model. Nucl. Phys. A 997, 121714 (2020)

  57. A. Keli, J.B. Natowitz, K.H. Schmidt, Dynamics and Thermodynamics with Nuclear Degrees of Freedom (Springer, Berlin Heidelberg, 2006)

    Google Scholar 

  58. G.Naveya, S.SanthoshKumar, S.I.A. Philominraj, A.Stephen, Study on particle and cluster decay of superheavy nuclei Z = 130 - 144 using cubic plus proximity potential with improved transfer matrix method. Int. J. Mod. Phys. E 28(07), 1950051 (2019)

  59. W.D. Myers, W.J. Swiatecki, Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966)

    Article  Google Scholar 

  60. W. Myers, W. Swiatecki, Anomalies in nuclear masses. Ark. fys. 36, 343–352 (1967)

    Google Scholar 

  61. G. Shanmugam, B. Kamalaharan, Application of a cubic barrier in exotic decay studies. Phys. Rev. C 38, 1377 (1988)

    Article  ADS  Google Scholar 

  62. G.M. Carmel VigilaBai, R.N. Agnes, Alpha decay and cluster decay of some neutron-rich actinide nuclei. Pramana J. Phys. 88(3), 43 (2017)

  63. P. Moller, J.R. Nix, W.J. Swiatecki, Calculated fission properties of the heaviest elements. Nucl. Phys. A 469(1), 1 (1987)

    Article  ADS  Google Scholar 

  64. M. Salehi, O. N. Ghodsi, The influence of the dependence of surface energy coefficient to temperature in the proximity model. Chin. Phys. Lett. 30(4), 042502 (2013)

  65. H.R. Jaqaman, Instability of hot nuclei. Phys. Rev. C 40, 1677–1684 (1989)

    Article  ADS  Google Scholar 

  66. M.Golshanian, O.N. Ghodsi, R.Gharaei, Role of surface energy coefficient and temperature of compound nucleus in the \(\alpha\)-decay process. Mod. Phys. Lett. A 28(36), 1350164 (2013)

  67. K.J. Le Couteur, D.W. Lang, Neutron evaporation and level densities in excited nuclei. Nucl. Phys. 13(1), 32–52 (1959)

    Article  Google Scholar 

  68. O. N. Ghodsi, H. R. Moshfegh, R. Gharaei, Role of the saturation properties of hot nuclear matter in the proximity formalism. Phys. Rev. C 88, 034601 (2013)

  69. D. Biswas, V. Kumar, Improved transfer matrix methods for calculating quantum transmission coefficient. Phys. Rev. E 90, 013301 (2014)

  70. S. Hosseini, H. Hassanabadi, S. Zarrinkamar, A comparative analysis of alpha-decay half-lives for even-even \(^{178}\)Pb to \(^{234}\)U isotopes. Nucl. Phys. A 970, 259–271 (2018)

  71. X. J. Bao, H. F. Zhang, B. S. Hu, G. Royer, J. Q. Li, Systematical calculation of decay half-lives with a generalized liquid drop model. Nucl. Phys. A 921, 85–95 (2014)

  72. A.I. Budaca, I. Silisteanu, Alpha-decay as sensitive tool to derive nuclear shell structure of superheavy nuclei. Rom. Rep. Phys. 63, 1147 (2011)

    Google Scholar 

  73. P.Preetha, S.SanthoshKumar, Nuclear Level Density and the Structural Dynamics of Rotating Superheavy Nucleus Z = 117. Braz. J. Phys. 50(3), 346–362 (2020)

  74. C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, Universal decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103, 072501 (2009)

  75. C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, D. Hu, Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law. Phys. Rev. C 80, 044326 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stephen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The copyright holder was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveya, G., Santhosh Kumar, S. & Stephen, A. Role of Temperature in the Alpha Decay Studies of Heavy and Superheavy Nuclei. Braz J Phys 51, 1810–1822 (2021). https://doi.org/10.1007/s13538-021-00999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00999-0

Keywords

Navigation