Skip to main content
Log in

Alteration of CdO Lattice Structure By Cu2+ Doping for Enhanced Photocatalytic Application

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Cadmium oxide (CdO) photocatalysts in pure and doped form have been prepared using chemically controlled co-precipitation method followed by calcination at different temperatures, to study the size-dependent structural properties and its influence on photocatalytic activity. As particle size and size distribution are the critical parameters in deciding the catalytic photodegradation, these were determined and correlated using X-ray diffraction (XRD), transmission electron microscope (TEM), and selected area electron diffraction (SAED). The calculated structural parameters using the recorded XRD patterns showed calcination temperature and dopant concentration reliance to its lattice structure. The extent of crystallinity changed by Cu doping and the measured crystallite sizes of all the prepared photocatalysts lied in the range 22 to 72 nm. Smallness in size together with the corresponding large surface area paved the way for the better photocatalytic activity of these nanoparticles in the degradation of methylene blue dye. Perceived well-defined edged morphology, with small size particles, as confirmed from TEM, advocates pronounced photocatalytic activity of the prepared pure and doped CdO nanoparticles. The distinct bright spotted rings seen in the SAED pattern exposed the high crystalline quality of the prepared samples. Impregnation of dopant ion Cu2+ into CdO lattice has been detected through X-ray photoelectron spectroscopy (XPS). Replaced Cu2+ enhanced the photocatalytic activity and is evaluated by monitoring the degradation of methylene blue solution. The highest photocatalytic activity of 1 wt.% Cu-doped CdO nanoarticles calcined at 400 °C was revealed from the superior percentage of color abatement (78.69%) and good rate constant (0.59814 h−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Li, M.M. Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Rev. 1(1), 3402 (1–19) (2010)

  2. M. Farbod, M. Kajabafvala, Effect of nanoparticle surface modification on the adsorption-enhanced photocatalysis of Gd/TiO2 nanocomposite. Powder Technol. 239, 434–440 (2013)

    Article  Google Scholar 

  3. V.E. Henrich, P.A. Cox, The Surface Chemistry of Metal Oxides (Cambridge University Press, United Kingdom, 1994)

    Google Scholar 

  4. R.J. Deokate, S.V. Salunkhe, G.L. Agawane, B.S. Pawar, S.M. Pawar, K.Y. Rajpure, A.V. Moholkar, J.H. Kim, Structural, optical and electrical properties of chemically sprayed nanosized gallium doped CdO thin films. J. Alloys Compd. 496(1–2), 357–363 (2010)

    Article  Google Scholar 

  5. K. Usharani, N. Manjula, A.R. Balu, V.S. Nagarethinam, Characteristic analysis of nanostructured Cl-doped CdO thin films-doping effect. Mater. Res. Innov. 20(3), 182–186 (2016)

    Article  Google Scholar 

  6. C. Karunakaran, R. Dhanalakshmi, Selectivity in photocatalysis by particulate semiconductors. Cent. Eur. J. Chem. 7(1), 134–137 (2009)

    Google Scholar 

  7. C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, G. Manikandan, Enhanced phenol-photodegradation by particulate semiconductor mixtures: interparticle electron-jump. J. Hazard. Mater. 176(1–3), 799–806 (2010)

    Article  Google Scholar 

  8. A. Nezamzadeh-Ejhieh, Z. Banan, A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination 279(1–3), 146–151 (2011)

    Article  Google Scholar 

  9. M.M. Rahman, B.S. Khan, H.M. Marwani, A.M. Asiri, K.A. Alamry, M.A. Rub, A. Khan, A.A.P. Khan, N. Azum, Facile synthesis of doped ZnO-CdO nanoblocks as solid-phase adsorbent and efficient solar photo-catalyst applications. J. Ind. Eng. Chem. 20(4), 2278–2286 (2014)

    Article  Google Scholar 

  10. Y-F. Chai, L-L. Wang, G-F. Huang, W-Q. Huang, Y-H. Zhu, Annealing effects on photocatalytic activity of Zn0.2Cd0.8S films prepared by chemical bath deposition, J. Nanomater. Article ID. 307687 (1–6) (2014)

  11. T.T. Chen, I.C. Chang, M.H. Yang, H.T. Chiu, C.Y. Lee, The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies. Appl. Catal. B Environ. 142–143, 442–449 (2013)

    Article  Google Scholar 

  12. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13(4), 697–704 (2013)

    Article  ADS  Google Scholar 

  13. T. Chen, Y. Zheng, J.M. Lin, G. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. J. Am. Soc. Mass Spectrom. 19(7), 997–1003 (2008)

    Article  Google Scholar 

  14. M. Mazaheritehrani, J. Asghari, R. Lotfi Orimi, S. Pahlavan, Microwave-assisted synthesis of nano-sized cadmium oxide as a new and highly efficient catalyst for solvent free acylation of amines and alcohols, Asian J. Chem. 22(4), 2554–2564 (2010)

  15. S. Ashoka, P. Chithaiah, G.T. Chandrappa, Studies on the synthesis of CdCO3 nanowires and porous CdO powder. Mater. Lett. 64(2), 173–176 (2010)

    Article  Google Scholar 

  16. A. Askarinejad, A. Morsali, Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater. Lett. 62(2), 478–482 (2008)

    Article  Google Scholar 

  17. B.S. Anandakumar, M.B.M. Reddy, K.V. Thipperudraiah, M.A. Pasha, G.T. Chandrappa, Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride. Chem. Pap. 67(2), 135–144 (2013)

    Google Scholar 

  18. Y.C. Zhang, G.L. Wang, Solvothermal synthesis of CdO hollow nanostructures from CdO2nanoparticles. Mater. Lett. 62(4–5), 673–675 (2008)

    Article  Google Scholar 

  19. A. Tadjarodi, M. Imani, A novel nanostructure of cadmium oxide synthesized by mechanochemical method. Mater. Res. Bull. 46(11), 1949–1954 (2011)

    Article  Google Scholar 

  20. R.K. Gupta, F. Yakuphanoglu, F.M. Amanullah, Band gap engineering of nanostructure Cu doped CdO films. Physica E Low Dimens. Syst. Nanostruct. 43(9), 1666–1668 (2011)

    Article  ADS  Google Scholar 

  21. R.B. Waghulade, P.P. Patil, R. Pasricha, Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta 72(2), 594–599 (2007)

    Article  Google Scholar 

  22. X. Song, W. Zhang, Z. Yin, A method for the synthesis of spherical copper nanoparticles in the organic phase. J. Colloid Interface Sci. 273(2), 463–469 (2004)

    Article  ADS  Google Scholar 

  23. N.L. Stock, J. Peller, K. Vinodgopal, P.V. Kamat, Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 34, 1747–1750 (2000)

    Article  ADS  Google Scholar 

  24. K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, Kajitvichyanukul, P.R. Krishnanayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, J. Photochem. Photobiol. 9, 171–192 (2008)

  25. C. Suryanarayana, M. Grant Norton, X-Ray diffraction: a practical approach, (Plenum Press, New York, 1998)

  26. H. Nguyen, S. Mho, I. Yeo, Preparation and characterization of nanosized (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+red phosphors. J. Lumin. 129(12), 1754–1758 (2009)

    Article  Google Scholar 

  27. K. Barbalace, Periodic Table of Elements. EnvironmentalChemistry.com. 1995 - 2020. Accessed on-line: 4/22/2020. https://EnvironmentalChemistry.com/yogi/periodic/

  28. C.V. Reddy, J. Shim, C. Byon, L.V. Krishna Rao, D.V. Satish, R.V.S.S.N. Ravikumar, Room temperature synthesis and spectral characterization of Cu2+-doped CdO powder, Indian J. Phys. 90(3), 359–364 (2016)

  29. M. Vigneshwaran, R. Chandiramouli, B.G. Jeyaprakash, D. Balamurugan, Physical properties ofspray deposited Mg doped CdO thin films. J. Appl. Phys. 12(16), 1754–1757 (2012)

    Google Scholar 

  30. V. Ramasam, K. Praba, G. Murugadoss, Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 963–971 (2012)

    Article  ADS  Google Scholar 

  31. M. Öztas, M. Bedir, Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films. Thin Solid Films 516, 1703–1709 (2008)

    Article  ADS  Google Scholar 

  32. S. Deshpande, S. Patil, V.N.T. Satyanarayana Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide, Appl. Phys. Lett. 87, 133113 (1–3) (2005)

  33. Y. Dou, R.G. Egdell, T. Walker, D.S.L. Law, G. Beamson, N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy. Surf. Sci. 398(1–2), 241–258 (1998)

    Article  ADS  Google Scholar 

  34. Y. Dou, T. Fishlock, R,G. Egdell, D.S.L. Law, G. Beamson, Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy, Phys. Rev. 55(20), 13381–13384 (1997)

  35. F. Bayansal, B. Sahin, M. Yuksel, H.A. Cetinkara, Mater. Lett. 98, 197–200 (2013)

    Article  Google Scholar 

  36. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film - dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82(1–2), 187–199 (2004)

    Article  Google Scholar 

  37. N. El-Kadry, A. Ashour, S.A. Mahmoud, Structural dependence of d.c. electrical properties of physically deposited CdTe thin films, Thin Solid Films. 269(1–2), 112–116 (1995)

  38. L. Wang, L. Chang, B. Zhao, Z. Yuan, G. Shao, W. Zheng, Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorg. Chem. 47(5), 1443–1452 (2008)

    Article  Google Scholar 

  39. H.S. Nalwa, Encyclopedia for Nanoscience and Nanotechnology (American Scientific Publishers, Valencia, CA, 2004)

    Google Scholar 

  40. T. Ungar, G. Tichy, J. Gubicza, R.J. Hellmig, Correlation between subgrains and coherently scattering domains. Powder Diffr. 20(4), 366–375 (2005)

    Article  ADS  Google Scholar 

  41. T.L. Alford, L.C. Feldman, J.W. Mayer, Electron diffraction. In: Fundamentals of Nanoscale Film Analysis, (Springer, Boston, MA, 2007)

  42. M.A. Asadabad, M.J. Eskandari, Electron siffraction. In: Modern Electron Microscopy in Physical and Life Sciences, (IntechOpen, 2016)

  43. B. Saha, R. Thapa, K.K. Chattopadhyay, Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique. Solid State Commun. 145(1–2), 33–37 (2008)

    Article  ADS  Google Scholar 

  44. B. Saha, R. Thapa, K.K. Chattopadhyay, Wide range tuning of electrical conductivity of RF sputtered CdO thin films through oxygen partial pressure variation. Sol. Energy Mater. Sol. Cells 92(9), 1077–1080 (2008)

    Article  Google Scholar 

  45. S. Majumder, A.C. Mendhe, D. Kim, B.R. Sankapal, CdO nanonecklace: Effect of air annealing on performance of photoelectrochemical cell. J. Alloys Compd. 788, 75-82 (2019). http://www.med.harvard.edu/jpnm/physics/refs/elecBE.html

  46. A. Kotani, N. Suzuki (eds.), Recent Advances in Magnetism of Transition Metal Compounds (World Scientific, Singapore, 1993)

    Google Scholar 

  47. A.C. Poulose, S. Veeranarayanan, Y. Yoshida, T. Maekawa, D.S Kumar, Rapid synthesis of triangular CdS nanocrystals without any trap emission, J. Nanoparticle Res. 14(789), 1–10 (2012)

  48. J.H. Lim, S.M. Lee, H-S. Kim, H.Y. Kim, J. Park, S-B. Jung, G.C Park, J. Kim, J. Joo, Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods, Sci. Rep. 7(41992), 1–10 (2017)

  49. H. Khallaf, C-T. Chen, L-B. Chang, O. Lupan, A. Dutta, H. Heinrich, A. Shenouda, L. Chow, Investigation of chemical bath deposition of CdO thin films using three different complexing agents, Appl. Surf. Sci. 257(22), 9237–9242 (2011)

  50. A. Celebioglu, S. Vempati, C. Ozgit-Akgun, N. Biyikliab, T. Uyar, Water-soluble non-polymeric electrospun cyclodextrin nanofiber template for the synthesis of metal oxide tubes by atomic layer deposition. RSC Adv. 4(106), 61698–61705 (2014)

    Article  ADS  Google Scholar 

  51. L.L. Pan, G.Y. Li, S.S. Xiao, L. Zhao, J.S. Lian, Bandgap variation in grain size controlled nanostructured CdO thin films deposited by pulsed-laser method, J. Mater. Sci.: Mater. Electron. 25(2), 1003–1012 (2014)

  52. C. Dantus, D. Timpu, D. Luca, F. Iacomi, UV irradiation influence on the structural and optical properties of CdO thin films, EPJ Appl. Phys. 55(10301), 1–6 (2011)

  53. Z.H. Gan, G.Q. Yu, B.K. Tay, C.M. Tan, Z.W. Zhao, Y.Q. Fu, Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. J. Phys. D: Appl. Phys. 37(1), 81–85 (2004)

    Article  ADS  Google Scholar 

  54. R. Shabu, A. Moses Ezhil Raj, C. Sanjeeviraja, C. Ravidhas, Assessment of CuO thin films for its suitablity as window absorbing layer in solar cell fabrications, Mater. Res. Bull. 68, 1–8 (2015)

  55. M. Ghosh, Polyimides: fundamentals and applications, (CRC Press, 1996)

  56. K. Mondal, S. Bhattacharyya, A. Sharma, Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber. Ind. Eng. Chem. Res. 53(49), 18900–18909 (2014)

    Article  Google Scholar 

  57. Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J. Mater. Chem. A 2(4), 1174–1182 (2014)

    Article  Google Scholar 

  58. A.I. Inamdar, A.C. Sonavanl, S.K. Sharma, H. Im, P.S. Patil, Nanocrystalline zinc oxide thin films by novel double pulse single step electrodeposition. J. Alloys Compd. 495(1), 76–81 (2010)

    Article  Google Scholar 

  59. D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. J. Mater. Chem. A 2(37), 15377–15388 (2014)

    Article  Google Scholar 

  60. L.G. Devi, B.N. Murthy, S.G. Kumar, Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: influence of crystallite size and dopant electronic configuration on photocatalytic activity, Mater. Sci. Eng. B: Solid-State Mater. Adv. 166, 1–6 (2010)

  61. A.-W. Xu, Y. Gao, H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207(2), 151–157 (2002)

    Article  Google Scholar 

  62. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts 3(1), 189–218 (2013)

    Google Scholar 

  63. M.N. Rashed, A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int. J. Phys. Sci. 2(3), 73–81 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Jeejamol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeejamol, D.J., Raj, A.M.E. & Aultrin, K.S.J. Alteration of CdO Lattice Structure By Cu2+ Doping for Enhanced Photocatalytic Application. Braz J Phys 51, 1550–1564 (2021). https://doi.org/10.1007/s13538-021-00993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00993-6

Keywords

Navigation