Skip to main content
Log in

Complete Complementarity Relations in System–environment Decoherent Dynamics

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate the system–environment information flow from the point of view of complete complementarity relations. We consider some commonly used noisy quantum channels: Amplitude damping, phase damping, bit flip, bit-phase flip, phase flip, depolarizing, and correlated amplitude damping. By starting with an entangled bipartite pure quantum state, with the linear entropy being the quantifier of entanglement, we study how entanglement is redistributed and turned into general correlations between the degrees of freedom of the whole system. For instance, it is possible to express the entanglement entropy in terms of the multipartite quantum coherence or in terms of the correlated quantum coherence of the different partitions of the system. In addition, we notice that for the depolarizing and bit-phase flip channels the wave and particle aspects can decrease or increase together. Besides, by considering the environment as part of a pure quantum system, the linear entropy is shown to be not just a measure of mixedness of a particular subsystem, but a correlation measure of the subsystem with rest of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Bohr, The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Article  ADS  MATH  Google Scholar 

  2. J.M. Lévy-Leblond, The term quanton was given by M. Bunge. The usefulness of this term is that one can refer to a generic quantum system without using words like particle or wave: J.M. Lévy-Leblond, On the Nature of Quantons, Science and Education 12, 495 (2003)

  3. W.K. Wootters, W.H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)

    Article  ADS  Google Scholar 

  4. B.G. Englert, Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  5. D.M. Greenberger, A. Yasin, Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)

    Article  ADS  Google Scholar 

  6. R. Auccaise, R.M. Serra, J.G. Filgueiras, R.S. Sarthour, I.S. Oliveira, L.S. Céleri, Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012)

    Article  ADS  Google Scholar 

  7. S. Dürr, Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)

    Article  ADS  Google Scholar 

  8. B.G. Englert, D. Kaszlikowski, L.C. Kwek, W.H. Chee, Wave-particle duality in multi-path interferometers: General concepts and three-path interferometers. Int. J. Quantum Inf. 6, 129 (2008)

    Article  MATH  Google Scholar 

  9. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying Coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. M.N. Bera, T. Qureshi, M.A. Siddiqui, A.K. Pati, Duality of Quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  11. E. Bagan, J.A. Bergou, S.S. Cottrell, M. Hillery, Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

    Article  ADS  Google Scholar 

  12. T. Qureshi, Coherence, interference and visibility. Quanta 8, 24 (2019)

    Article  MathSciNet  Google Scholar 

  13. S. Mishra, A. Venugopalan, T. Qureshi, Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)

    Article  ADS  Google Scholar 

  14. R.M. Angelo, A.D. Ribeiro, Wave-particle duality: An information-based approach. Found. Phys. 45, 1407 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P.J. Coles, Entropic framework for wave-particle duality in multipath interferometers. Phys. Rev. A 93, 062111 (2016)

    Article  ADS  Google Scholar 

  16. E. Bagan, J. Calsamiglia, J.A. Bergou, M. Hillery, Duality games and operational duality relations. Phys. Rev. Lett. 120, 050402 (2018)

    Article  ADS  MATH  Google Scholar 

  17. P. Roy, T. Qureshi, Path predictability and quantum coherence in multi-slit interference. Phys. Scr. 94, 095004 (2019)

    Article  ADS  Google Scholar 

  18. M.L.W. Basso, D.S.S. Chrysosthemos, J. Maziero, Quantitative wave-particle duality relations from the density matrix properties. Quant. Inf. Process. 19, 254 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. C.S. Yu, Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  20. X.F. Qian, K. Konthasinghe, K. Manikandan, D. Spiecker, A.N. Vamivakas, J.H. Eberly, Turning off quantum duality. Phys. Rev. Research 2, 012016 (2020)

    Article  ADS  Google Scholar 

  21. M. Jakob, J.A. Bergou, Quantitative complementarity relations in bipartite systems: Entanglement as a physical reality. Opt. Comm. 283, 827 (2010)

    Article  ADS  Google Scholar 

  22. D. Bruss, Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M.L.W. Basso, J. Maziero, Complete complementarity relations for multipartite pure states. J. Phys. A: Math. Theor. 53, 465301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.L.W. Basso J. Maziero, An uncertainty view on complementarity and a complementarity view on uncertainty. arXiv:2007.05053.(2020)

  26. J.A. Bergou, M. Hillery, Introduction to the Theory of Quantum Information Processing (Springer, New York, 2013).

    Book  MATH  Google Scholar 

  27. J. Maziero, Hilbert-Schmidt quantum coherence in multi-qudit systems. Quantum Inf. Process. 16, 274 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Jakob, J.A. Bergou, Complementarity and entanglement in bipartite qudit systems. Phys. Rev. A 76, 052107 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Jakob, J.A. Bergou, Generalized complementarity relations in composite quantum systems of arbitrary dimensions. Int. J. Mod. Phys. B 20, 1371 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. V.S. Bhaskara, P.K. Panigrahi, Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product. Quantum Inf. Process. 16, 118 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. W.H. Zurek, Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  32. W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. U. Singh, M.N. Bera, H.S. Dhar, A.K. Pati, Maximally coherent mixed states: Complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  34. Y. Yao, X. Xiao, L. Ge, C.P. Sun, Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  35. K. C. Tan, H. Kwon, C.Y. Park, H. Jeong, Unified view of quantum correlations and quantum coherence, Phys. Rev. A 94, 02 2329 (2016)

  36. A. Salles, F. de Melo, M.P. Almeida, M. Hor-Meyll, S.P Walborn, P.H. Souto Ribeiro, L. Davidovich. Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

  37. J. Wang, J. Jing, System-environment dynamics of X-type states in noninertial frames. Ann. Phys. 327, 283 (2012)

    Article  ADS  MATH  Google Scholar 

  38. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  39. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    MATH  Google Scholar 

  40. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  41. F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  42. J.H. An, SJ Wang, H.G. Luo, Entanglement dynamics of qubits in a common environment. Physica A 382, 753 (2007)

  43. A. D’Arrigo, G. Benenti, G. Falci, C. Macchiavello, Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)

    Article  ADS  Google Scholar 

  44. D.O. Soares-Pinto, M.H.Y. Moussa, J. Maziero, E.R. deAzevedo, T.J. Bonagamba, R.M. Serra, L.C. Céleri. Equivalence between Redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336 (2011)

  45. I.L. Chuang, M.A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997)

    Article  ADS  Google Scholar 

  46. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  47. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  48. N. Quesada, A. Al-Qasimi, D.F.V. James, Quantum properties and dynamics of X states. J. Mod. Opt. 59, 1322 (2012)

    Article  ADS  Google Scholar 

  49. A. Peres, Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. T. Yu, J.H. Eberly, Finite-Time Disentanglement via Spontaneous Emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  51. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, Experimental Observation of Environment-induced Sudden Death of Entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  52. K.C. Tan, H. Jeong, Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett. 121, 220401 (2018)

    Article  ADS  Google Scholar 

  53. M.L.W. Basso, J. Maziero, Monogamy and trade-off relations for correlated quantum coherence. Phys. Scr. 95, 095105 (2020)

    Article  ADS  Google Scholar 

  54. Y. Yeo, A. Skeen, Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), process 88882.427924/2019-01, and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos L. W. Basso.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, M.L.W., Maziero, J. Complete Complementarity Relations in System–environment Decoherent Dynamics. Braz J Phys 51, 969–985 (2021). https://doi.org/10.1007/s13538-021-00931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00931-6

Keywords

Navigation