Skip to main content
Log in

Microstructure and Electrical Properties of the DC-sputtered Al1−xMox Alloys

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Al1−xMox alloy deposits have been obtained by magnetron co-sputtering upon glass substrates in order to study their crystallographic structure and electrical properties. Layer thickness is about 3 µm. The microstructural analysis has been performed by X-ray diffraction and by transmission electron microscopy. The electrical characteristics were measured by the Van der Pauw method. The Al–Mo system deposit consists of two concomitant phases in varying concentrations when the molybdenum content increases. Regardless of the Mo concentration, the deposits are two-phase whom the degree of crystallinity evolves in opposite directions. The electrical conductivity remains substantially stable at low values regardless of the Mo concentration. Therefore, these deposits will have important uses, in particular in practical applications in modern technology fields as a diffusion barrier. The electrical conductivity values increase after annealing at the temperature of 773 K for 1h. The Al5Mo stable phase, expected by the equilibrium diagram, appears for each deposit in addition to other stable phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Lee, C. Ophus, L.M. Fischer, N. Nelson-Fitzpatrick, K.L. Westra, S. Evoy, V. Radmilovic, U. Dahment, D. Mitlin, Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063–3070 (2006)

    Article  Google Scholar 

  2. J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, J.S.C. Jiang, M.J. Chen, S.H. Chang, W.C. Huang, Fabrication and characterizations of thin film metallic glasses: antibacterial property and durability study for medical application. Thin Solid Films 561, 102–107 (2014)

    Article  ADS  Google Scholar 

  3. W. Diyatmika, J.P. Chu, B.T. Kacha, C.C. Yu, C.M. Lee, Thin film metallic glasses in optoelectronic, magnetic, and electronic applications : a recent update. Curr. Opin. Solid. St. M. 19, 95–106 (2015)

    Article  Google Scholar 

  4. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses : unique properties and potential applications. Thin Solid Films 520, 5097–5122 (2012)

    Article  ADS  Google Scholar 

  5. M. Kabla, H. Seiner, M. Musilova, M. Landa, D. Shilo, The relationships between sputter deposition conditions, grain size, and phase transformation temperatures in NiTi thin films. Acta Mater. 70, 79–91 (2014)

    Article  ADS  Google Scholar 

  6. T. Car, N. Radić, P. Panjan, M. Čekada, A. Tonejc, Correlation between hardness and stress in Al–(Nb, Mo, Ta) thin films. Thin Solid Films 517, 4605–4609 (2009)

    Article  ADS  Google Scholar 

  7. C. Wang, T. Wang, L. Cao, G. Wang, G. Zhang, Solid solution or amorphous phase formation in Al-Mo alloyed films and their mechanical properties. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.02.230

    Article  Google Scholar 

  8. D.S. Gionola, Z. Lee, C. Ophus, E.J. Laber, D. Mothin, U. Dahmen, K.J. Hemker, V.R. Radmilovic, Tensile behavior of Al1_xMox crystalline and amorphous thin films. Acta Mater. 61, 1432–1443 (2013)

    Article  ADS  Google Scholar 

  9. J. Ivkov, K. Salamon, N. Radi, M. Sori, Thermal stability of Al-Mo thin film alloys. J. Alloy. Compd. 646, 1109–1115 (2015)

    Article  Google Scholar 

  10. Z. Lee, C. Ophus, L.M. Fischer, N. Nelson-Fitzpatrick, K.L. Westra, S. Evoy, V. Radmilovic, U. Dahmen, D. Mitlin, Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063–3070 (2006)

    Article  Google Scholar 

  11. C. Ophus, E.J. Luber, M. Edelen, Z. Lee, D. Mitlin, Nanocrystalline–amorphous transitions in Al–Mo thin films: bulk and surface evolution. Acta Mater. 57(4), 4296–4303 (2009)

    Article  ADS  Google Scholar 

  12. C. Wanga, T. Wanga, L. Caob, S. Yua, G. Zhanga, The effect of deposition rate on amorphous forming composition range and resistivity of Al100−xMox alloy films. Thin Solid Films 713, 138354 (2020)

    Article  ADS  Google Scholar 

  13. T. Car, J. Ivkov, M. Jer cinovi, N. Radi, The relaxation processes in the Al-(Nb, Mo, Ta, W) binary amorphous thin films. Vacuum 98 , 75–80 (2013)

  14. N. Karpe, L.-U. Aaen Andersen, K. Dyrbye, J. Bottiger, K.V. Rao, Ion-beam mixing of Al-V films: structure and hall effect. Phys. Rev. B 39, 9874 (1989)

  15. J. Musil, V. Šatava, R. Čerstvý, P. Zeman, T. Tölg, Formation of crystalline Al–Ti–O thin films and their properties. Surf. Coat. Technol. 202(24), 6064–6069 (2008)

    Article  Google Scholar 

  16. S. Ruan, C.A. Schuh, Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57, 3810–3822 (2009)

    Article  ADS  Google Scholar 

  17. Donghui Zhang, Dejun Kongab, Microstructures and immersion corrosion behavior of laser thermal sprayed amorphous Al-Ni coatings in 3.5 % NaCl solution. J. Alloys Compd. 735(25), 1–12 (2018)

  18. M Draissia1, H Boudemagh1 and M Y Debli1, Structure and hardness of the sputtered Al-Cu thin films system. Physica Scripta 69, 348 (2004)

  19. F. Haidara, M.-C. Record, B. Duployer, D. Mangelinck, Phase formation in Al-Fe thin film systems. Intermetallics 23, 143–147 (2012)

    Article  Google Scholar 

  20. M. Stubičar, A. Tonejc, N. Radić, Microhardness characterization of Al–W thin films. Vacuum 61(2–4), 309–316 (2001)

    Article  ADS  Google Scholar 

  21. J. Ivkov. K. Salamon, N.Radic, M. Soric, Thermal stability of Al-Mo thin film alloys. J. Alloys Compd. 646, 1109–1115 (2015)

  22. J. Creus, C. Berziou, S. Cohendoz, A. Perez, C. Rébéré, M. Reffass, S. Touzain, C. Allely, Y. Gachon, C. Héau, F. Sanchette, A. Billard, Reactivity classification in saline solution of magnetron sputtered or EBPVD pure metallic, nitride and Al-based alloy coatings. Corros. Sci. 57, 162–173 (2012)

    Article  Google Scholar 

  23. L. Brewer, R.H. Lamoreaux, Al-Mo (aluminum-molybdenum), in Binary Alloy Phase Diagrams, vol. 1, ed. by T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker (American Society of Metals, Ohio, 1987), pp. 133–135

    Google Scholar 

  24. L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450, 34–41 (2004)

    Article  ADS  Google Scholar 

  25. R. Chwang, B.J. Smith, C.R. Crowell, Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement. Solid-State Electron. 17(12), 1217–1227 (1974)

    Article  ADS  Google Scholar 

  26. J. Ivkov, N. Radic, The electrical resistivity in Al-W amorphous alloys. Solid State Commun. 106(5), 273–277 (1998)

    Article  ADS  Google Scholar 

  27. J. Ivkov , E. Babi, The Hall coefficient in disordered alloys of early and late transition metals. J. Non-Cryst. Solids 156, 307–310 (1993). https://doi.org/10.1016/0022-3093(93)90185-z

  28. J. Ivkov, N. Radic´, A. Tonejcc, Hall effect in Al–W thin films. Solid State Commun. 129, 369–373 (2004)

  29. M.A. Howson, B.L. Gallagher, The electron transport properties of metallic glasses. Phys. Rep. 170(5), 265–324 (1988)

    Article  ADS  Google Scholar 

  30. A. Schulte, W. Haensch, G. Fritsch, E. Luscher, Disorder and density of states effects on the Hall constant in amorphous transition metal alloys. Phys. Rev. B 40, 3581 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially carried out at the “Université UTBM (site de Montbéliard)- FRANCE.” The authors are grateful to Pr. A. Billard for the fruitful discussions and experimental supports

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Mosbah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Al1−xMox alloy deposits have been obtained by magnetron co-sputtering upon glass substrates in order to study their crystallographic structure and electrical properties.

- Two metastable supersaturated solid solutions that coexist on all the elaborated layers.

- The electrical conductivity values increase after annealing compared to untreated deposits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosbah, A., Saker, A., Mekki, D.E. et al. Microstructure and Electrical Properties of the DC-sputtered Al1−xMox Alloys. Braz J Phys 51, 461–468 (2021). https://doi.org/10.1007/s13538-021-00896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00896-6

Keywords

Navigation