Parameters Affecting the Size of Gold Nanoparticles Prepared by Pulsed Laser Ablation in Liquid

Abstract

Pulse laser ablation is the most effective technique as it can be carried out within a spotless and well-regulated setting which eventually produces ultrapure nanoparticles. Several factors affect the formation of nanoparticles regarding size when the laser ablation technique is utilized. Primary factors include both physical parameters (fluency of laser, pulse durations, time of irradiation, wavelength and rate of repetition) as well as chemical parameters (fluid type and solid target size). When the energy density was elevated to the optimum rate, it led to growth in nanoparticle production. Additionally, the findings revealed that variation of solid target needed diverse optimum pulse durations and irradiation time to produce small and narrowly sized distributions of nanoparticles. The most frequent pulse duration was a few nanoseconds. Moreover, the study revealed that the nanoparticle size of colloids is controllable through shifting the wavelength from the fundamental harmonic up to the 4th harmonic (1064 to 266 nm). The wavelength of 532 nm is most widely utilized in preparing nanoparticles with optimal size and shape. The pulse repetition rate was proved to altering the average size of target nanoparticles. Meanwhile, the most frequently used pulse repetition rate was 10 Hz. Finally, it is important to simultaneously realize the optimum working conditions and optimum values of the whole parameters in order to succeed in ablating material in the form of particulates, atoms, and ions as well as to achieve the optimum synthesis of nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    S. Affandi, N. Bidin, Pulse laser ablation in liquid induce gold nanoparticle production. J. Teknol. 74, 41–43 (2015)

    Google Scholar 

  2. 2.

    S. Amagasa, N. Nishida, Y. Kobayashi, Y. Yamada, Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols. Hyperfine Interact. 237, 110 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    M.A. Al-Azawi, N. Bidin, Gold nanoparticles synthesized by laser ablation in deionized water. Chin. J. Phys. 53, 201–209 (2015)

    Google Scholar 

  4. 4.

    H. Naser, M. Alghoul, M.K. Hossain, N. Asim, M. Abdullah, M.S. Ali et al., The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. J. Nanopart. Res. 21, 249 (2019)

    ADS  Article  Google Scholar 

  5. 5.

    Z. Sheykhifard, M. Ranjbar, H. Farrokhpour, H. Salamati, Direct fabrication of Au/Pd (II) colloidal core-shell nanoparticles by pulsed laser ablation of gold in PdCl2 solution. J. Phys. Chem. C. 119, 9534–9542 (2015)

    Article  Google Scholar 

  6. 6.

    K.K. Kim, H.J. Kwon, S.K. Shin, J.K. Song, S.M. Park, Stability of uncapped gold nanoparticles produced by laser ablation in deionized water: the effect of post-irradiation. Chem. Phys. Lett. 588, 167–173 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    W.N.W. Shukri, N. Bidin, S. Affandi, S.P. Bohari, Synthesize of gold nanoparticles with 532 nm and 1064 nm pulsed laser ablation. J. Teknol. 78, 267–270 (2015)

    Google Scholar 

  8. 8.

    R. Nikov, A. Nikolov, N. Nedyalkov, P. Atanasov, M. Alexandrov, D. Karashanova, Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids. Appl. Surf. Sci. 274, 105–109 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    K.A. Elsayed, H. Imam, M. Ahmed, R. Ramadan, Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid. Opt. Laser Technol. 45, 495–502 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    P. Smejkal, J. Pfleger, B. Vlcková, O Dammer, Laser ablation of silver in aqueous ambient: effect of laser pulse wavelength and energy on efficiency of the process. J Phys. Conference Series: IOP Publishing; p. 185 (2007)

  11. 11.

    E. Giorgetti, A. Giusti, S.C. Laza, P. Marsili, F. Giammanco, Production of colloidal gold nanoparticles by picosecond laser ablation in liquids. physica status solidi (a). 204, 1693–8. (2007)

  12. 12.

    Y. Kimura, H. Takata, M. Terazima, T. Ogawa, S. Isoda, Preparation of gold nanoparticles by the laser ablation in room-temperature ionic liquids. Chem. Lett. 36, 1130–1131 (2007)

  13. 13.

    A. Hamad, L. Li, Z. Liu, Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths. Appl. Phys. A 122, 904 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    A. Menéndez-Manjón, B.N. Chichkov, S. Barcikowski, Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation. J Phys Chem C. 114, 2499–2504 (2010)

    Article  Google Scholar 

  15. 15.

    S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J Phys Chem C. 113, 9526–9531 (2009)

    Article  Google Scholar 

  16. 16.

    F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani, H. Fallah, Preparation of silver nanoparticles by laser ablation and fragmentation in pure water. Laser Phys. Lett. 3, 252 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    D. Riabinina, J. Zhang, M. Chaker, J. Margot, D. Ma, Size control of gold nanoparticles synthesized by laser ablation in liquid media. ISRN Nanotechnology. 2012 (2012)

  18. 18.

    G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20–22 (1973)

  19. 19.

    D. Liu, C. Li, F. Zhou, T. Zhang, H. Zhang, X. Li et al., Rapid synthesis of monodisperse au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling sers enhancement. Sci. Rep. 5, 7686 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C. 113, 11892–11906 (2009)

    Article  Google Scholar 

  21. 21.

    RO. Torres Mendieta, Synthesis of colloidal nanomaterials through femtosecond laser ablation. (2016)

  22. 22.

    M. Darroudi, A.K. Zak, M.R. Muhamad, R. Zamiri, Preparation of gelatinous gold nanoparticles by pulsed laser ablation. Res. Chem. Intermed. 41, 4587–4594 (2015)

    Article  Google Scholar 

  23. 23.

    V. Amendola, M. Meneghetti, Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J. Mater. Chem. 17, 4705–4710 (2007)

    Article  Google Scholar 

  24. 24.

    A.V. Kabashin, M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941–7943 (2003)

    ADS  Article  Google Scholar 

  25. 25.

    G. Compagnini, A.A. Scalisi, O. Puglisi, C. Spinella, Synthesis of gold colloids by laser ablation in thiol-alkane solutions. J. Mater. Res. 19, 2795–2798 (2004)

    ADS  Article  Google Scholar 

  26. 26.

    F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J. Phys. Chem. B. 106, 7575–7 (2002)

  27. 27.

    E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26, 727–742 (2015)

    Article  Google Scholar 

  28. 28.

    A. Menéndez-Manjón, S. Barcikowski, Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl. Surf. Sci. 257, 4285–4290 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    K. Puech, A. Grund, G. Cardenas, C. Bubeck, W. Blau, Picosecond degenerate four-wave mixing in colloidal solutions of gold nanoparticles at high repetition rates. Opt. Lett. 20, 1613–1615 (1995)

    ADS  Article  Google Scholar 

  30. 30.

    M.A. Sobhan, M. Ams, M.J. Withford, E.M. Goldys, Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size. J. Nanopart. Res. 12, 2831–2842 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    V. Amendola, M. Meneghetti, What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Article  Google Scholar 

  32. 32.

    R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, G. Zamiri, Z. Rizwan et al., The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution. Int. J. Nanomed. 8, 233 (2013)

    Google Scholar 

  33. 33.

    R. Tilaki, S. Mahdavi, The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J. Nanopart. Res. 9, 853–860 (2007)

    ADS  Article  Google Scholar 

  34. 34.

    A. Simakin, V. Voronov, N. Kirichenko, G. Shafeev, Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A Mater. Sci. Process. 79, 1127–1132 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    G. Compagnini, A.A. Scalisi, O. Puglisi, Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874–7877 (2003)

    ADS  Article  Google Scholar 

  36. 36.

    H. Imam, K. Elsayed, M.A. Ahmed, R. Ramdan, Effect of experimental parameters on the fabrication of gold nanoparticles via laser ablation. Optics and Photonics Journal. 2 (2012)

  37. 37.

    T. Del Rosso, N. Rey, T. Rosado, S. Landi, D. Larrude, E. Romani et al., Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers. Nanotechnology 27, 255602 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    G. Palazzo, G. Valenza, M. Dell’Aglio, A. De Giacomo, On the stability of gold nanoparticles synthesized by laser ablation in liquids. J. Colloid Interface Sci. 489, 47–56 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    K. Choudhury, R. Singh, P. Kumar, M. Ranjan, A. Srivastava, A. Kumar, Effect of confined geometry on the size distribution of nanoparticles produced by laser ablation in liquid medium. Nano-Structures & Nano-Objects. 17, 129–137 (2019)

    Article  Google Scholar 

  40. 40.

    S. Scaramuzza, M. Zerbetto, V. Amendola, Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: insights to improve size control and productivity. J. Phys. Chem. C. 120, 9453–9463 (2016)

    Article  Google Scholar 

  41. 41.

    C. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley New York Google Scholar, 1983)

  42. 42.

    U. Kreibig, M. Vollmer, Theoretical Considerations (Springer, Optical Properties of Metal Clusters, 1995), pp. 13–201

    Google Scholar 

  43. 43.

    J. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941). There is no corresponding record for this reference. (1983)

  44. 44.

    W. Haiss, N.T. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Anal. Chem. 79, 4215–4221 (2007)

    Article  Google Scholar 

  45. 45.

    M. Rafique, M.S. Rafique, S.H. Butt, U. Kalsoom, A. Afzal, S. Anjum et al., Dependence of the structural optical and thermo-physical properties of gold nano-particles synthesized by laser ablation method on the nature of laser. Optik-International Journal for Light and Electron Optics. 134, 140–148 (2017)

    Article  Google Scholar 

  46. 46.

    Y. Liu, B.J. Austen, T. Cornwell, R.D. Tilbury, M.A. Buntine, A.P. O’Mullane et al., Collisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucose. Electrochem. Commun. 77, 24–27 (2017)

    Article  Google Scholar 

  47. 47.

    H.Z. Yi Wei, H. Zhang, X. Zhu, G. Liu, Y. Li, W. Cai, One-step and surfactant-free fabrication of Au nanoparticles-decorated BiOCl nanosheets based on laser ablation in solutions and their enhanced visible light plasmonic photocatalysis. Chem. Phys. Chem. 1146–54 (2017)

  48. 48.

    T. Simao, D.M. Chevrier, J. Jakobi, A. Korinek, G. Goupil, M. Lau et al., Gold-manganese oxide core-shell nanoparticles produced by pulsed laser ablation in water. J. Phys. Chem. C. 120, 22635–22645 (2016)

    Article  Google Scholar 

  49. 49.

    W.N.W. Shukri, N. Bidin, S. Islam, G. Krishnan, M.A.A. Bakar, M.S. Affandi, Synthesis and characterization of uncoated and cysteamine-coated gold nanoparticles by pulsed laser ablation. J Nanophotonics. 10, 046007 (2016)

  50. 50.

    R. Intartaglia, M. Rodio, M. Abdellatif, M. Prato, M. Salerno, Extensive characterization of oxide-coated colloidal gold nanoparticles synthesized by laser ablation in liquid. Materials. 9, 775 (2016)

    ADS  Article  Google Scholar 

  51. 51.

    R. Torres-Mendieta, D. Ventura-Espinosa, S. Sabater, J. Lancis, G. Mínguez-Vega, J.A. Mata, In situ decoration of graphene sheets with gold nanoparticles synthetized by pulsed laser ablation in liquids. Sci. Rep. 6, (2016)

  52. 52.

    R. Binaymotlagh, H. Hadadzadeh, H. Farrokhpour, F.H. Haghighi, F. Abyar, S.Z. Mirahmadi-Zare, In situ generation of the gold nanoparticles–bovine serum albumin (AuNPs–BSA) bioconjugated system using pulsed-laser ablation (PLA). Mater. Chem. Phys. 177, 360–370 (2016)

    Article  Google Scholar 

  53. 53.

    N. Semaltianos, E. Hendry, H. Chang, M. Wears, Electrophoretic deposition on graphene of Au nanoparticles generated by laser ablation of a bulk Au target in water. Laser Phys. Lett. 12, 046201 (2015)

    ADS  Article  Google Scholar 

  54. 54.

    A. Urusov, A. Petrakova, P. Kuzmin, A. Zherdev, P. Sveshnikov, G. Shafeev et al., Application of gold nanoparticles produced by laser ablation for immunochromatographic assay labeling. Anal. Biochem. 491, 65–71 (2015)

    Article  Google Scholar 

  55. 55.

    M.A. Al-Azawi, N. Bidin, M. Bououdina, A. Alshanableh, E.Y. Salih, The effects of liquid environment on ablation efficiency and morphology of gold nanoparticles prepared by laser ablation technique. J. Nano Res. 37, (2016)

  56. 56.

    M. Dell’Aglio, V. Mangini, G. Valenza, O. De Pascale, A. De Stradis, G. Natile et al., Silver and gold nanoparticles produced by pulsed laser ablation in liquid to investigate their interaction with ubiquitin. Appl. Surf. Sci. 374, 297–304 (2016)

    ADS  Article  Google Scholar 

  57. 57.

    V.L. Kumar, R. Siddhardha, A. Kaniyoor, R. Podila, M. Molli, S.M. Kumar et al., Gold decorated graphene by laser ablation for efficient electrocatalytic oxidation of methanol and ethanol. Electroanalysis 26, 1850–1857 (2014)

    Article  Google Scholar 

  58. 58.

    M. Zhilnikova, E. Barmina, G. Shafeev, A. Simakin, S. Pridvorova, O. Uvarov, Laser-assisted generation of elongated Au nanoparticles and subsequent dynamics of their morphology under pulsed irradiation in water and calcium chloride solutions. arXiv preprint arXiv: 181203041 (2018)

  59. 59.

    H. Alluhaybi, S. Ghoshal, W.W. Shamsuri, B. Alsobhi, A. Salim, G. Krishnan, Pulsed laser ablation in liquid assisted growth of gold nanoparticles: evaluation of structural and optical features. Nano-Structures & Nano-Objects. 19, 100355 (2019)

    Article  Google Scholar 

  60. 60.

    P.H.M.A. Hedei, S.K. Alsaee, A.F. Omar, U. Hashim, N.H.M. Kaus, Spectral aging of gold and silver nanoparticles synthesized by laser ablation in liquids. J. Nanophotonics 13, 020502 (2019)

    Google Scholar 

  61. 61.

    D. Bubb, S. O’Malley, J. Schoeffling, R. Jimenez, B. Zinderman, S. Yi, Size control of gold nanoparticles produced by laser ablation of thin films in an aqueous environment. Chem. Phys. Lett. 565, 65–68 (2013)

    ADS  Article  Google Scholar 

  62. 62.

    N. Takada, A. Fujikawa, N. Koshizaki, K. Sasaki, Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water. Appl. Phys. A 110, 835–839 (2013)

    ADS  Article  Google Scholar 

  63. 63.

    M. Alauddin, K.K. Kim, M. Roy, J.K. Song, M.S. Kim, S.M. Park, Aggregation of laser-generated gold nanoparticles mediated by formalin. Bull. Korean Chem. Soc. 34, 188–196 (2013)

    Article  Google Scholar 

  64. 64.

    R. Kadhim, M. Noori, A. Ali, Preparation of gold nanoparticles by pulsed laser ablation in NaOH solution. J. Babylon Univ. Pure Appl. Sci. 22, 547–551 (2012)

    Google Scholar 

  65. 65.

    G. Shafeev, I. Rakov, K. Ayyyzhy, G. Mikhailova, A. Troitskii, O. Uvarov, Generation of Au nanorods by laser ablation in liquid and their further elongation in external magnetic field. Appl. Surf. Sci. 466, 477–482 (2019)

    ADS  Article  Google Scholar 

  66. 66.

    N. Matsuo, H. Muto, K. Miyajima, F. Mafuné, Single laser pulse induced aggregation of gold nanoparticles. Phys. Chem. Chem. Phys. 9, 6027–6031 (2007)

    Article  Google Scholar 

  67. 67.

    A. Popov, G. Tselikov, A. Al-Kattan, A. Kabashin, Femtosecond Laser-Ablative Synthesis of Plasmonic Au and TiN Nanoparticles for Biomedical Applications (International Society for Optics and Photonics, Synthesis and Photonics of Nanoscale Materials XVI, 2019), p. 1090708

    Google Scholar 

  68. 68.

    M.I.S.M.H. Tan, A.F. Omar, M. Rashid, U. Hashim, VIS-NIR spectral and particles distribution of Au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation. Results Phys. 14, 102497 (2019)

  69. 69.

    A. Zoppi, S. Caporali, F. Muniz-Miranda, A. Pedone, M. Muniz-Miranda, Adsorption of Trans-Zeatin on Laser-Ablated Gold Nanoparticles for Transport into Plant Cells and Growth Stimulation. ACS Appl. Nano Mater. (2019)

  70. 70.

    F. Mafuné, J-y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B. 105, 5114–20 (2001)

Download references

Acknowledgements

The authors would like to express their gratitude towards Electro-Optic Centre, Directorate of Material Research as well as Ministry of Science and Technology, Iraq, for offering the research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hameed Naser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naser, H., Shanshool, H.M. & Imhan, K.I. Parameters Affecting the Size of Gold Nanoparticles Prepared by Pulsed Laser Ablation in Liquid. Braz J Phys (2021). https://doi.org/10.1007/s13538-021-00875-x

Download citation

Keywords

  • Laser ablation
  • Physical parameters
  • Chemical parameters
  • Gold nanoparticles
  • Size nanoparticles