Morphology, Conductivity, and Mechanical Properties of Electropolymerized Polypyrrole/Silver-Coated Granular Microsphere Composite Films

Abstract

We report a facile synthesis of polypyrrole/silver-coated granular microsphere composite films through electropolymerization process in the presence of low- and high-density conductive granular microspheres. The resulting morphologies of composite films were implicitly influenced by the density of microspheres as revealed by scanning electron microscopy (SEM). Energy-dispersive X-ray (EDX) analysis confirmed the existence of elemental composition of the polypyrrole and conductive microspheres, while Fourier transform infrared (FTIR) spectroscopy verified the presence of molecular bonding associated with the dopant anion in all the synthesized films. Resistivity measurements demonstrated enhanced nonlinear conductivity and a strong dependence of current density in composite films with increasing application of electric field. Improvement in nonlinear conductivities is linked to the formation of more effective conductive pathways that boosted intermolecular and inter-particle charge carrier migration. Tensile tests reveal that the conductive granular microspheres have the general tendency to decrease internal forces in composite films.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    X. Lu, W. Zhang, C. Wang, T.C. Wen, Y. Wei, One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36(5), 671–712 (2011). https://doi.org/10.1016/j.progpolymsci.2010.07.010

    Article  Google Scholar 

  2. 2.

    R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. ActaBiomater. 10(6), 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015

    Article  Google Scholar 

  3. 3.

    S. Pramodini, P. Poornesh, Continuous wave laser induced third-order nonlinear optical properties of conducting polymers. Polym. Eng. Sci. 55(10), 2396–2402 (2015). https://doi.org/10.1002/pen.24128

    Article  Google Scholar 

  4. 4.

    R. Rajagopalan, J.O. Iroh, Development of polyaniline–polypyrrole composite coatings on steel by aqueous electrochemical process. Electrochim. Acta 46(16), 2443–2455 (2001). https://doi.org/10.1016/s0013-4686(01)00357-7

    Article  Google Scholar 

  5. 5.

    S.M. Sayyah, S.S. Abd El-Rehim, M.M. El-Deeb, Electropolymerization of pyrrole and characterization of the obtained polymer films. J. Appl. Polym. Sci. 90(7), 1783–1792 (2003). https://doi.org/10.1002/app.12793

    Article  Google Scholar 

  6. 6.

    L.X. Wang, X.G. Li, Y.L. Yang, Preparation, properties and applications of polypyrroles. React. Funct. Polym. 47(2), 125–139 (2001). https://doi.org/10.1016/s1381-5148(00)00079-1

    Article  Google Scholar 

  7. 7.

    J. Stejskal, Conducting polymer-silver composites. Chem. Pap. 67(8), (2013). https://doi.org/10.2478/s11696-012-0304-6

  8. 8.

    J. Škodová, D. Kopecký, M. Vrňata, M. Varga, J. Prokeš, M. Cieslar, J. Stejskal, Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polym. Chem. 4(12), 3610 (2013). https://doi.org/10.1039/c3py00250k

    Article  Google Scholar 

  9. 9.

    D. Muñoz-Rojas, J. Oró-Solé, O. Ayyad, P. Gómez-Romero, Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small 4(9), 1301–1306 (2008). https://doi.org/10.1002/smll.200701199

    Article  Google Scholar 

  10. 10.

    A. Chen, H. Wang, X. Li, One-step process to fabricate Ag–polypyrrole coaxial nanocables. Chem. Commun. 14, 1863–1864 (2005). https://doi.org/10.1039/b417744d

    ADS  Article  Google Scholar 

  11. 11.

    X. Zhang, S.K. Manohar, Narrow pore-diameter polypyrrole nanotubes. J. Am. Chem. Soc. 127(41), 14156–14157 (2005). https://doi.org/10.1021/ja054789v

    Article  Google Scholar 

  12. 12.

    N.L. Pickup, J.S. Shapiro, D.K. Wong, Extraction of silver by polypyrrole films upon a base–acid treatment. Anal. Chim. Acta 364(1–3), 41–51 (1998). https://doi.org/10.1016/s0003-2670(98)00144-5

    Article  Google Scholar 

  13. 13.

    M. Ocypa, M. Ptasińska, A. Michalska, K. Maksymiuk, E.A.H. Hall, Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): the reaction/diffusion balance. J. Electroanal. Chem. 596(2), 157–168 (2006). https://doi.org/10.1016/j.jelechem.2006.07.032

    Article  Google Scholar 

  14. 14.

    M.M. Ayad, E. Zaki, Synthesis and characterization of silver–polypyrrole film composite. Appl. Surf. Sci. 256(3), 787–791 (2009). https://doi.org/10.1016/j.apsusc.2009.08.060

    ADS  Article  Google Scholar 

  15. 15.

    S. Biallozor, A. Kupniewska, Conducting polymers electrodeposited on active metals. Synth. Met. 155(3), 443–449 (2005). https://doi.org/10.1016/j.synthmet.2005.09.002

    Article  Google Scholar 

  16. 16.

    J. Wang, C. Wu, P. Wu, X. Li, M. Zhang, J. Zhu, Polypyrrole capacitance characteristics with different doping ions and thicknesses. Phys. Chem. Chem. Phys. 19(31), 21165–21173 (2017). https://doi.org/10.1039/c7cp02707a

    Article  Google Scholar 

  17. 17.

    J. Stejskal, M. Trchová, J. Kovářová, L. Brožová, J. Prokeš, The reduction of silver nitrate with various polyaniline salts to polyaniline–silver composites. React. Funct. Polym. 69(2), 86–90 (2009). https://doi.org/10.1016/j.reactfunctpolym.2008.11.004

    Article  Google Scholar 

  18. 18.

    Y. Han, S. Li, M. Frechette, D. Min, Nonlinear conductivity of polymer nanocomposites: a study on epoxy resin\/silicon carbide materials. IEEE Nanatechnol. Mag. 12(2), 23–32 (2018). https://doi.org/10.1109/mnano.2018.2814085

    Article  Google Scholar 

  19. 19.

    B. Sixou, N. Mermilliod, J.P. Travers, Aging effects on the transport properties in conducting polymer polypyrrole. Physical Review B 53(8), 4509–4521 (1996). https://doi.org/10.1103/physrevb.53.4509

    ADS  Article  Google Scholar 

  20. 20.

    G. Inzelt, Charge transport in polymer modified electrodes. Encyclopedia of Electrochemistry, A.J. Bard, M. Stratmann (eds.) Functions and applications of modified electrodes Vol. 10, I. Rubinstein, J. Rusling, M. Fujihara (eds.), Weinheim, Wiley-VCH

  21. 21.

    T.-H. Le, Y. Kim, H. Yoon, Electrical and electrochemical properties of conducting polymers. Polymers 9(12), 150 (2017). https://doi.org/10.3390/polym9040150

    Article  Google Scholar 

  22. 22.

    Q. Zheng, L. Shen, W. Li, Y. Song, X. Yi, Nonlinear conductive properties and scaling behavior of conductive particle filled high-density polyethylene composites. Chin. Sci. Bull. 50(5), 385–395 (2005). https://doi.org/10.1007/bf02897450

    Article  Google Scholar 

  23. 23.

    A. Oskouyi, U. Sundararaj, P. Mertiny, Current-voltage characteristics of nanoplatelet-based conductive nanocomposites. Nanoscale Res. Lett. 9(1), 369 (2014). https://doi.org/10.1186/1556-276x-9-369

    ADS  Article  Google Scholar 

  24. 24.

    G. Gorrasi, E. Piperopoulos, M. Lanza, C. Milone, Effect of morphology of the filler on the electrical behaviour of poly(l-lactide) nanocomposites. J. Phys. Chem. Solids 74(1), 1–6 (2013). https://doi.org/10.1016/j.jpcs.2012.08.006

    ADS  Article  Google Scholar 

  25. 25.

    R.N. Singh, Madhu & Awasthi, R., Polypyrrole Composites: Electrochemical synthesis (electropolymerization, characterizations and applications, 2011). https://doi.org/10.5772/29083

    Book  Google Scholar 

  26. 26.

    A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. International Journal of Polymer Science 2018, 1–8 (2018). https://doi.org/10.1155/2018/4191747

    Article  Google Scholar 

  27. 27.

    Á.A. Arrieta Almario, & R.L. Vieira, Study of polypyrrole films modified with copper and silver microparticles by electrochemical cementation process. J. Chil. Chem. Soc. 51(3), 2006. https://doi.org/10.4067/s0717-97072006000300009

  28. 28.

    A.S. Liu, M.C. Bezerra, L.Y. Cho, Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium. Mater. Res. 12(4), 503–507 (2009). https://doi.org/10.1590/s1516-14392009000400021

    Article  Google Scholar 

  29. 29.

    R. Dimeska, P.S. Murray, S.F. Ralph, G.G. Wallace, Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer 47(13), 4520–4530 (2006). https://doi.org/10.1016/j.polymer.2006.03.112

    Article  Google Scholar 

  30. 30.

    Q. Liao, H. Hou, J. Duan, S. Liu, Y. Yao, Z. Dai, C. Yu, & D. Li, Composite sodium p-toluene sulfonate-polypyrrole-iron anode for a lithium-ion battery.J. Appl. Polym. Sci. 134(24). https://doi.org/10.1002/app.44935

  31. 31.

    M. Salmon, A.F. Diaz, A.J. Logan, M. Krounbi, J. Bargon, Chemical modification of conducting polypyrrole films. Mol. Cryst. Liq. Cryst. 83(1), 265–276 (1982). https://doi.org/10.1080/00268948208072175

    Article  Google Scholar 

  32. 32.

    B.H. Stuart, Infrared spectroscopy: fundamentals and applications. (John Wiley&Sons, Ltd., 2004)

  33. 33.

    S. Alva, R.S. Utami, L.K. Shyuan, I. Puspasari, A.B. Mohammad, Synthesis and characterization of toluene sulfonic acid (TSA)-doped polypyrrole nanoparticles: effect of dopant concentrations. International Journal of Innovation in Mechanical Engineering and Advanced Materials 2(1), 1 (2016). https://doi.org/10.22441/ijimeam.2016.1.001

    Article  Google Scholar 

  34. 34.

    R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12(3), 608–622 (2000). https://doi.org/10.1021/cm990537f

    Article  Google Scholar 

  35. 35.

    B.J. Feldman, P. Burgmayer, R.W. Murray, The potential dependence of electrical conductivity and chemical charge storage of poly(pyrrole) films on electrodes. J. Am. Chem. Soc. 107(4), 872–878 (1985). https://doi.org/10.1021/ja00290a024

    Article  Google Scholar 

  36. 36.

    H. Hu, X. Zhang, D. Zhang, J. Gao, C. Hu, Y. Wang, Study on the nonlinear conductivity of SiC/ZnO/epoxy resin micro- and nanocomposite materials. Materials 12(5), 761 (2019). https://doi.org/10.3390/ma12050761

    ADS  Article  Google Scholar 

  37. 37.

    R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere, S. Chandra, Metal/semiconductive polymer Schottky device. Appl. Phys. Lett. 58(1), 51–52 (1991). https://doi.org/10.1063/1.104441

    ADS  Article  Google Scholar 

  38. 38.

    R. Valaski, S. Ayoub, L. Micaroni, I. Hümmelgen, Influence of film thickness on charge transport of electrodeposited polypyrrole thin films. Thin Solid Films 415(1–2), 206–210 (2002). https://doi.org/10.1016/s0040-6090(02)00553-9

    ADS  Article  Google Scholar 

  39. 39.

    Q. Chen, J. Gao, K. Dai, H. Pang, J. Xu, J. Tang, Z. Li, Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils. Chin. J. Polym. Sci. 31(2), 211–217 (2012). https://doi.org/10.1007/s10118-013-1203-1

    Article  Google Scholar 

  40. 40.

    Y. Gefen, W.-H. Shih, R.B. Laibowitz, J.M. Viggiano, Nonlinear behavior near the percolation metal-insulator transition. Phys. Rev. Lett. 57(24), 3097–3100 (1986). https://doi.org/10.1103/physrevlett.57.3097

    ADS  Article  Google Scholar 

  41. 41.

    A. Celzard, G. Furdin, J.F. Mareche, E. McRae, J. Mater. Sci. 32(7), 1849–1853 (1997). https://doi.org/10.1023/a:1018504906935

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel Tiu Maquiling.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Fig. 22
figure22

X-ray spectrum with percentage composition of a AgHG and b AgSL granular microspheres

Appendix 2

Fig. 23
figure23

X-ray spectrum with percentage composition of (ab) 2PPy, (cd) 3PPy, and (ef) 4PPy films

Appendix 3

Fig. 24
figure24

X-ray spectrum with percentage composition of (ab) 2PPy/AgHG, (cd) 3PPy/AgHG, and (ef) 4PPy/AgHG composite films

Appendix 4

Fig. 25
figure25

X-ray spectrum with percentage composition of (ab) 2PPy/AgSL, (cd) 3PPy/AgSL, and (ef) 4PPy/AgSL composite films

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Advincula, A.O., Maquiling, J.T. Morphology, Conductivity, and Mechanical Properties of Electropolymerized Polypyrrole/Silver-Coated Granular Microsphere Composite Films. Braz J Phys 51, 698–721 (2021). https://doi.org/10.1007/s13538-021-00873-z

Download citation

Keywords

  • Polypyrrole
  • Silver-coated granular microsphere
  • Composite film
  • Morphology
  • Conductivity