Skip to main content

Neutron Skin, Central Depletion, Neutron–Proton Interaction Effects and 2pF Parameterization for Zr in Neutron Stars

Abstract

A study of the neutron skin thicknesses, central depletions and neutron–proton interactions for the isotopic chain of Zr (32 ≤ N ≤ 98) with even-even and even-odd nuclei is carried out within the framework of the Skyrme–Hartree–Fock approach. The neutron skin thicknesses are calculated by three different methods, one of which is the hard spheres, and the neutron thicknesses including surface and bulk parts are investigated for Zr isotopes as a function of the relative neutron excess I = (N − Z)/A. For that purpose, the level density distributions and 2pF parameters are calculated, and theoretical methods are used to obtained the residual and average neutron–proton interactions (δVnp, δnp), in addition to the single-particle energy levels for \( j=l\mp \frac{1}{2} \) states, the charge form factors Fch(k), and the pairing, Fermi and binding energies. The importance of the obtained results is discussed in terms of the quantum effects, the Coulomb repulsion and neutron–neutron interaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. S. Weissenborn, D. Chatterjee, Hyperons and massive neutron stars: The role of hyperon potentials. J. Schaffner-Bielich. Nucl. Phys. A 881, 62–77 (2012)

    ADS  Google Scholar 

  2. K. Vantournhout, T. Neff, H. Feldmeier, N. Jachowicz, Towards a quantal dynamical simulation of the neutron star’s crust. J. Ryckebusch. Prog. Part. Nucl. Phys. 66, 271–275 (2011)

    ADS  Google Scholar 

  3. J. Schaffner-Bielich, Hypernuclear physics for neutron stars. Nucl. Phys. A 804, 309–321 (2008)

    ADS  Google Scholar 

  4. M. Warda, M. Centelles, X. Viñas, X. Roca-Maza, Influence of the single-particle structure on the nuclear surface and the neutron skin. Phys. Rev. C 89, 064302 (2014)

    ADS  Google Scholar 

  5. N. Chamel, Effective mass of free neutrons in neutron star crust. Nucl. Phys. A 773, 263–278 (2006)

    ADS  Google Scholar 

  6. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Phys. of Compact Objects (John Wiley, New York, 1983)

    Google Scholar 

  7. C.E. Alvarez-Salazar, C.J. Quimbay, Astroparticle Phys. 103, 67 (2018)

    ADS  Google Scholar 

  8. J. Wambach, Quasiparticle interaction in neutron matter for application in neutron stars. Phys. Rep. 242, 387–401 (1994)

    ADS  Google Scholar 

  9. G. Fricke, C. Bernhardt, K. Heilig, L.A. Schaller, L. Schellenberg, E.B. Shera, C.W. Dejager, At. Data Nucl. Data Tables 60, 177 (1995)

    ADS  Google Scholar 

  10. H.D. Vries, C.D. Jager, C.D. Vries, Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36, 495–536 (1987)

    ADS  Google Scholar 

  11. I. Angeli, K. Marinova, Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 99, 69–95 (2013)

    ADS  Google Scholar 

  12. G.W. Hoffmann, L. Ray, M. Barlett, J. McGill, G.S. Adams, G.J. Igo, F. Irom, A.T.M. Wang, C.A. Whitten, R.L. Boudrie, J.F. Amann, C. Glashausser, N.M. Hintz, G.S. Kyle, G.S. Blanpied, 0.8 GeVp+Pb208elastic scattering and the quantityΔrnp. Phys. Rev. C 21, 1488–1494 (1980)

    ADS  Google Scholar 

  13. B.C. Clark, L.J. Kerr, S. Hama, Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering. Phys. Rev. C 67, 054605 (2003)

    ADS  Google Scholar 

  14. C. Batty, E. Friedman, A. Gal, Density-dependent -nucleus optical potentials from global fits to atom data. Nucl. Phys. A 592, 487–512 (1995)

    ADS  Google Scholar 

  15. A. Krasznahorkay, H. Akimune, A.M. van den Berg, N. Blasi, S. Brandenburg, M. Csatlo´s, M. Fujiwara, J. Gulya´s, M.N. Harakeh, M. Hunyadi, M. de Huu, Z. Ma´te, D. Sohler, S.Y. van der Werf, H.J. Wo¨rtche, L. Zolnai, Neutron-skin thickness in neutron-rich isotopes. Nucl. Phys. A 731, 224–234 (2004)

    ADS  Google Scholar 

  16. A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F.J. Hartmann, R. Schmidt, T. von Egidy, B. Kłos, Neutron Density Distributions Deduced from Antiprotonic Atoms. Phys. Rev. Lett. 87, 082501 (2001)

    ADS  Google Scholar 

  17. J. Jastrzebski, A. Trzcinska, P. Lubinski, B. Kłos, F.J. Hartmann, T. von Egidy, S. Wycech, Neutron Density Distributions From Antiprotonic Atoms Compared With Hadron Scattering Data. Int. J. Mod. Phys. E 13, 343–351 (2004)

    ADS  Google Scholar 

  18. B. Kłos, A. Trzcińska, J. Jastrzębski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F.J. Hartmann, B. Ketzer, P. Ring, R. Schmidt, T. Egidy, R. Smolańczuk, S. Wycech, K. Gulda, W. Kurcewicz, E. Widmann, B.A. Brown, Neutron density distributions from antiprotonicPb208andBi209atoms. Phys. Rev. C 76, 014311 (2007)

    ADS  Google Scholar 

  19. A. Klimkiewicz et al., Acta Phys. Pol. B 40, 589 (2009)

    ADS  Google Scholar 

  20. J. Zenihiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, H. Takeda, M. Itoh, H.P. Yoshida, M. Uchida, Neutron density distributions ofPb204,206,208deduced via proton elastic scattering atEp=295MeV. Phys. Rev. C 82, 044611 (2010)

    ADS  Google Scholar 

  21. S. Beloin, S. Han, A.W. Steiner, K. Odbadrakh, Simultaneous fitting of neutron star structure and cooling data. Phy. Rev. C 100, 055801 (2019)

    ADS  Google Scholar 

  22. G. Baym, H.A. Bethe, C.J. Pethick, Neutron star matter. Nucl. Phys. A 175, 225–271 (1971)

    ADS  Google Scholar 

  23. Z. Wu, S.A. Changizi, C. Qi, Empirical residual neutron-proton interaction in odd-odd nuclei. Phys. Rev. C 93, 034334 (2016)

    ADS  Google Scholar 

  24. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawac, At. Data Nucl. Data Tables 109, 1 (2016)

    ADS  Google Scholar 

  25. G.A. Lalazissis, S. Raman, Ground-State Properties Of Even–Even Nuclei In The Relativistic Mean-Field Theory. At. Data Nucl. Data Tables 71, 1–40 (1999)

    ADS  Google Scholar 

  26. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, The AME2016 atomic mass evaluation (II). Tables, graphs and references. X. Xu. Chinese Phys. C 41(3), 030003 (2017)

    ADS  Google Scholar 

  27. P.G. Reinhard, H. Flocard, Nuclear effective forces and isotope shifts. Nucl. Phys. A 584, 467–488 (1995)

    ADS  Google Scholar 

  28. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627, 710–746 (1997)

    ADS  Google Scholar 

  29. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. 635, 231–256 (1998)

    Google Scholar 

  30. F. Tondeur, M. Brack, M. Farine, J.M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces. Nucl. Phys. A 420, 297–319 (1984)

    ADS  Google Scholar 

  31. G. Johnson Hafomn code, (2020) http://phys.lsu.edu/graceland/faculty/cjohnson/

  32. Y. Yulianto, Z. Suud, J. Physics: Conf. Ser. 739, 012142 (2016)

    Google Scholar 

  33. P. Ring, P. Schuck. The Nucl. Many Body Problem, Springer. (1980)

  34. T.H.R. Skyrme, CVII. The nuclear surface. Philos. Mag. 1, 1043–1054 (1956)

    ADS  MATH  Google Scholar 

  35. T. Skyrme, Nucl. Phys. 9, 615 (1959)

    Google Scholar 

  36. L. Ge, Y. Zhou, N. Wolfgang, Nucl. Phys. A 459, 77 (1986)

    Google Scholar 

  37. D. Vautherin, D.M. Brink, Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei. Phys. Rev. C 5, 626–647 (1972)

    ADS  Google Scholar 

  38. K. Bennaceur, Coordinate-space solution of the Skyrme–Hartree–Fock– Bogolyubov equations within spherical symmetry. The program HFBRAD (v1.00). J. Dobaczewski. Comput. Phys. Commun. 168, 96–122 (2005)

    ADS  Google Scholar 

  39. P.G. Reinhard, F. Grummer, K.Z. Goeke, Z. Phys. A 317, 339 (1974)

    ADS  Google Scholar 

  40. P. Sarriguren, M.K. Gaidarov, E. Moya de Guerra, A.N. Antonov, Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations. Phys. Rev. C 76, 044322 (2007)

    ADS  Google Scholar 

  41. R.W. Hasse, W.D. Myers, Geometrical Relationships of Macroscopic (Nuclear Physics Springer-Verlag, Heidelberg, 1988)

    Google Scholar 

  42. G. Saxena, M. Kumawat, M. Kaushik, S. Jain, M. Aggarwal, Bubble structure in magic nuclei. Phys. Lett. B 788, 1–6 (2019)

    ADS  Google Scholar 

  43. G. Saxena, M. Kumawat, B.K. Agrawal, M. Aggarwal, A systematic study of the factors affecting central depletion in nuclei. J. Phys. G: Nucl. Part. Phys. 46, 065105 (2019)

    ADS  Google Scholar 

  44. M. Grasso, Evolution of the protonsdstates in neutron-rich Ca isotopes. Phys. Rev. C 76, 044319 (2007)

    ADS  Google Scholar 

  45. B. Schuetrumpf, W. Nazarewicz, P.G. Reinhard, Phys. Rev. C 96, 024306 (2017)

    ADS  Google Scholar 

  46. J. Friedrich, N. Voegler, The salient features of charge density distributions of medium and heavy even-even nuclei determined from a systematic analysis of elastic electron scattering form factors. Nucl. Phys. A 373, 192–224 (1982)

    ADS  Google Scholar 

  47. P.E. Hodgson, D.J. Millener, Revista Brasileira de Física 2(1), 1 (1972)

    Google Scholar 

  48. E.B. Suckling Ph.D thesis in University of Surrey (2011)

  49. S.G. Nilsson, I. Ragnarsson. Shapes and shells in Nucl.Ear structure, Cambridge University Press (1995)

  50. M. Brack, J. Damgaard, A. Jensen, H. Pauli, V. Strutinsky, C. Wong, Funny Hills: The Shell-Correction Approach to Nuclear Shell Effects and Its Applications to the Fission Process. Rev. Mod. Phys. 44, 320–405 (1972)

    ADS  Google Scholar 

  51. H. Müther, A. Polls, Phys. Rew. C 99, 034315 (2019)

    ADS  Google Scholar 

  52. H. Müther, F. Sammarruca, Z. Ma, Relativistic effects and three-nucleon forces in nuclear matter and nuclei. Int. J. Mod. Phys. E 26, 1730001 (2017)

    ADS  Google Scholar 

  53. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  54. A.N. Antonov, D.N. Kadrev, M.K. Gaidarov, E.M. Guerra, P. Sarriguren, J.M. Udias, V.K. Lukyanov, E.V. Zemlyanaya, G.Z. Krumova, Charge and matter distributions and form factors of light, medium, and heavy neutron-rich nuclei. Phys. Rev. C 72, 044307 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Artun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artun, O. Neutron Skin, Central Depletion, Neutron–Proton Interaction Effects and 2pF Parameterization for Zr in Neutron Stars. Braz J Phys 50, 602–614 (2020). https://doi.org/10.1007/s13538-020-00777-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00777-4

Keywords

  • Neutron stars
  • Neutron skin thicknesses
  • Bubble structures
  • Neutron–proton interactions