Skip to main content
Log in

α-decay Chains of Superheavy Nuclei Nh Using a Finite-Range NN Interaction

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The α-decay half-lives of nihonium, 279 − 284Nh, isotopes and their α-decay products are studied by employing the density-dependent cluster model. The Wentzel-Kramers-Brillouin semiclassical approximation including the Bohr-Sommerfeld quantization condition is adopted in the evaluation of the α-decay widths. The double-folding α-daughter potential was determined using the effective M3Y-Paris nucleon-nucleon (NN) interaction. Both spherical and deformed shapes for the daughter nuclei are considered with the zero-range exchange contribution of the NN interaction. Investigations of the effects of nonlocality on α-decay half-lives have been studied through the finite-range exchange part of the NN interaction. We found that the inclusion of the finite-range exchange part decreases α-decay half-lives as compared with those values using the zero-range calculations. The inclusion of deformation degrees of freedom in the daughter nuclei reduces the α-decay half-lives as compared with spherical shape. The calculated α-decay half-lives are compared with other theoretical models and they are in good agreement. The competition between α-decay and spontaneous fission is studied and the possible decay modes are presented for unknown nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.T. Brewer, et al., Phys. Rev. C. 98, 024317 (2018)

    ADS  Google Scholar 

  2. V. K. Utyonkov, et al., Phys. Rev. C. 97, 014320 (2018)

    ADS  Google Scholar 

  3. Y.T. Oganessian, K. P. Rykaczewski,, Vol. 68 (2015)

  4. Y.T. Oganessian, V. K. Utyonkov, Rep. Prog. Phys. 78, 036301 (2015)

    ADS  Google Scholar 

  5. Y.T. Oganessian, et al., Phys. Rev. Lett. 104, 142502 (2010)

    ADS  Google Scholar 

  6. S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000)

    ADS  Google Scholar 

  7. Y.T. Oganessian, J. Phys. Conf. Ser. 312, 082003 (2011)

    Google Scholar 

  8. D. Ackermann, Nucl. Phys. A. 787, 353 (2007)

    ADS  Google Scholar 

  9. Y.T. Oganessian, V. K. Utyonkov, Nucl. Phys. A. 944, 62 (2015)

    ADS  Google Scholar 

  10. K. Morita, Nucl. Phys. A. 944, 30 (2015)

    ADS  Google Scholar 

  11. K. Morita, et al., J. Phys. Soc. Jpn. 73, 2593 (2004)

    ADS  Google Scholar 

  12. K. Morita, et al., J. Phys. Soc. Jpn. 81, 103201 (2012)

    ADS  Google Scholar 

  13. YT Oganessian, et al., Phys. Rev. C. 83, 054315 (2011)

    ADS  Google Scholar 

  14. H. F. Zhang, G. Royer, Phys. Rev. C. 76, 047304 (2007)

    ADS  Google Scholar 

  15. D. N. Poenaru, M. Ivasÿcu, A. Sćandulescu, J. Phys. G: Nucl. Part. Phys. 5, L169 (1979)

    ADS  Google Scholar 

  16. C. Xu, Z. Ren, Nucl. Phys. A. 753, 174 (2005)

    ADS  Google Scholar 

  17. W. M. Seif, A. Adel, Phys. Rev. C. 99, 044311 (2019)

    ADS  Google Scholar 

  18. M Ismail, A Adel, J. Phys. G: Nucl. Part. Phys. 46, 075105 (2019)

    ADS  Google Scholar 

  19. W. M. Seif, A.M.H. Abdelhady, A. Adel, J. Phys. G. Nucl. Part. Phys. 45, 115101 (2018)

    ADS  Google Scholar 

  20. G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000)

    ADS  Google Scholar 

  21. V. E. Viola Jr., G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)

    Google Scholar 

  22. A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B. 224, 1 (1989)

    ADS  Google Scholar 

  23. A.I. Budaca, R. Budaca, I. Silisteanu, Nucl. Phys. A. 951, 60 (2016)

    ADS  Google Scholar 

  24. D. N. Poenaru, R. A. Gherghescu, N. Carjan, Europhys. Lett. 77, 62001 (2007)

    ADS  Google Scholar 

  25. M. Horoi, B. A. Brown, A. Sandulescu, J. Phys. G: Nucl. Part. Phys. 30, 945 (2004)

    ADS  Google Scholar 

  26. C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    ADS  Google Scholar 

  27. Y. Z. Wang, S. J. Wang, Z. Y. Hou, J. Z. Gu, Phys. Rev. C. 92, 064301 (2015)

    ADS  Google Scholar 

  28. N. Wang, M. Liu, X. Z. Wu, J. Meng, Phys. Lett. B. 734, 215 (2014). http://www.imqmd.com/mass/

    ADS  Google Scholar 

  29. S. M. S. Ahmed, R. Yahaya, S. Radiman, M. S. Yasir, J. Phys. G: Nucl. Part. Phys. 40, 065105 (2013)

    ADS  Google Scholar 

  30. D. Deng, Z. Ren, D. Ni, Y. Qian, J. Phys. G: Nucl. Part. Phys. 42, 075106 (2015)

    ADS  Google Scholar 

  31. D. Deng, Z. Ren, Phys. Rev. C. 93, 044326 (2016)

    ADS  Google Scholar 

  32. S. M. S. Ahmed, Nucl. Phys. A. 962, 103 (2017)

    ADS  Google Scholar 

  33. C. Xu, Z. Ren, Phys. Rev. C. 74, 014304 (2006)

    ADS  Google Scholar 

  34. M. Ismail, A. Y. Ellithi, M. M. Botros, A. Adel, Phys. Rev. C. 81, 024602 (2010)

    ADS  Google Scholar 

  35. M. Ismail, W. M. Seif, A. Adel, A. Abdurrahman, Nucl. Phys. A. 958, 202 (2017)

    ADS  Google Scholar 

  36. R. E. Langer, Phys. Rev. 51, 669 (1937)

    ADS  Google Scholar 

  37. N. G. Kelkar, H. M. Castaneda, Phys. Rev. C. 76, 064605 (2007)

    ADS  Google Scholar 

  38. G. R. Satchler, W. G. Love, Phys. Rep. 55, 183 (1979)

    ADS  Google Scholar 

  39. M. Ismail, A. Adel, Phys. Rev. C. 88, 054604 (2013)

    ADS  Google Scholar 

  40. M. Ismail, A. Adel, Phys. Rev. C. 89, 034617 (2014)

    ADS  Google Scholar 

  41. B. Buck, J. C. Johnston, A. C. Merchant, S. M. Perez, Phys. Rev. C. 53, 2841 (1996)

    ADS  Google Scholar 

  42. W. M. Seif, Phys. Rev. C. 91, 014322 (2015)

    ADS  Google Scholar 

  43. J. E. Perez Velasquez, N. G. Kelkar, N. J. Upadhyay, Phys. Rev. C. 99, 024308 (2019)

    ADS  Google Scholar 

  44. P. Roy Chowdhury, C. Samanta, D. N. Basu, Phys. Rev. C. 73, 014612 (2006)

    ADS  Google Scholar 

  45. D. T. Khoa, Phys. Rev.C. 63, 034007 (2001)

    ADS  Google Scholar 

  46. M. Ismail, A. Adel, Phys. Rev. C. 86, 014616 (2012)

    ADS  Google Scholar 

  47. M. Ismail, A. Adel, Phys. Rev. C. 97, 044301 (2018)

    ADS  Google Scholar 

  48. M. Ismail, A. Adel, Phys. Rev. C. 101, 024607 (2020)

    ADS  Google Scholar 

  49. A. Adel, T. Alharbi, Nucl. Phys. A. 975, 1 (2018)

    ADS  Google Scholar 

  50. B. Sinha, Phys. Rep. 20, 1 (1975)

    ADS  Google Scholar 

  51. X. Campi, A. Bouyssy, Phys. Lett. B. 73, 263 (1978)

    ADS  Google Scholar 

  52. C. Xu, Z. Ren, Y. Guo, Phys. Rev. C. 78, 044329 (2008)

    ADS  Google Scholar 

  53. T.L. Zhao, X.J. Bao, Phys. Rev. C. 98, 064307 (2018)

    ADS  Google Scholar 

  54. K. Varga, R. G. Lovas, R. J. Liotta, Phys. Rev. Lett. 69, 37 (1992)

    ADS  Google Scholar 

Download references

Funding

This study was financially supported by the deanship of scientific research, Majmaah University, Saudi Arabia under Project No. 86/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Adel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, A., Alharbi, T. α-decay Chains of Superheavy Nuclei Nh Using a Finite-Range NN Interaction. Braz J Phys 50, 454–465 (2020). https://doi.org/10.1007/s13538-020-00753-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00753-y

Keywords

Navigation