Skip to main content
Log in

A Unique Jerk System with Abundant Dynamics: Symmetric or Asymmetric Bistability, Tristability, and Coexisting Bubbles

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Finding and revealing new features and behaviors of simple chaotic systems have always been an important and attractive research topic. This paper aims to introduce a new 3D autonomous jerk chaotic system and explore its rich dynamical behaviors including period-doubling bifurcation and reverse period-doubling bifurcation routes to chaos, crisis and internal crisis, multiple symmetric coexisting attractors, and antimonotonicity. Especially, the phenomena of asymmetric bistability (e.g., coexistence of a point attractor and chaotic attractor or coexistence of a point attractor and period-5 limit cycle), tristability (e.g., coexistence of a point attractor and a pair of symmetric chaotic or periodic attractors), and coexisting bubbles are found, which have been rarely reported before. By using standard nonlinear analysis methods such as bifurcation diagrams, the largest Lyapunov exponent, phase portraits, Poincaré sections, 0–1 test chart and the basin of attraction for an attractor, and the complex dynamical behaviors of the system are investigated in detail. Furthermore, a corresponding hardware electronic circuit is designed to verify the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.C. Sprott, Some simple chaotic flows [J]. Phys Rev E 50(2), R647 (1994). https://doi.org/10.1103/physreve.50.r647

    Article  ADS  MathSciNet  Google Scholar 

  2. K.H. Sun, J.C. Sprott, A simple jerk system with piecewise exponential nonlinearity [J]. Int J Nonlin Sci Num 10(11–12), 1443–1450 (2009). https://doi.org/10.1515/IJNSNS.2009.10.11-12.1443

  3. K. Rajagopal, V.T. Pham, F.R. Tahir, A. Akgul, H.R. Abdolmohammadi, S. Jafari, A chaotic jerk system with non-hyperbolic equilibrium: dynamics, effect of time delay and circuit realization [J]. Pramana 90(4), 52–58 (2018). https://doi.org/10.1007/s12043-018-1545-x

    Article  ADS  Google Scholar 

  4. C. Wang, H. Xia, L. Zhou, A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers [J]. Int J Bifurcat Chaos 27(6), 1750091 (2017). https://doi.org/10.1142/S0218127417500912

    Article  ADS  MathSciNet  Google Scholar 

  5. A.R. Elsonbaty, A.M.A. El-Sayed, Further nonlinear dynamical analysis of simple jerk system with multiple attractors [J]. Nonlinear Dynam 87(2), 1169–1186 (2017). https://doi.org/10.1007/s11071-016-3108-3

    Article  Google Scholar 

  6. J. Ma, X. Wu, R. Chu, et al., Selection of multi-scroll attractors in jerk circuits and their verification using Pspice [J]. Nonlinear Dynam 76(4), 1951–1962 (2014). https://doi.org/10.1007/s11071-014-1260-1

    Article  Google Scholar 

  7. X. Xia, Y. Zeng, Z. Li, Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system [J]. Pramana 91(6), 82–14 (2018). https://doi.org/10.1007/s12043-018-1657-3

    Article  ADS  Google Scholar 

  8. S. Fang, Z. Li, X. Zhang, Y. Li, Hidden extreme multistability in a novel no-equilibrium fractional-order chaotic system and its synchronization control [J]. Braz J Phys 49, 1–13 (2019). https://doi.org/10.1007/s13538-019-00705-1

    Article  Google Scholar 

  9. K. Rajagopal, S. Jafari, A. Akgul, A. Karthikeyan, Modified jerk system with self-exciting and hidden flows and the effect of time delays on existence of multi-stability [J]. Nonlinear Dyn 93, 1087–1108 (2018). https://doi.org/10.1007/s11071-018-4247-5

    Article  Google Scholar 

  10. T.V. Kamdoum, K.S. Takougang, K.G. Fautso, et al., Coexistence of attractors in autonomous Van der Pol-Duffing jerk oscillator: analysis, chaos control and synchronisation in its fractional-order form [J]. Pramana 91(1), 12–11 (2018). https://doi.org/10.1007/s12043-018-1586-1

    Article  Google Scholar 

  11. W. Zhen, A. Akgul, V.T. Pham, et al., Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors [J]. Nonlinear Dyn 89(3), 1877–1887 (2017). https://doi.org/10.1007/s11071-017-3558-2

    Article  Google Scholar 

  12. S. Vaidyanathan, A. Akgul, S. Kaçar, U. Çavuşoğlu, A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography [J]. Eur Phys J Plus 133(2), 46–18 (2018). https://doi.org/10.1140/epjp/i2018-11872-8

  13. K. Rajagopal, A. Akgul, S. Jafari, et al., Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses [J]. Chaos, Solitons Fractals 103, 476–487 (2017). https://doi.org/10.1016/j.chaos.2017.07.007

    Article  ADS  MathSciNet  Google Scholar 

  14. H.P. Ren, C. Bai, K. Tian, et al., Dynamics of delay induced composite multi-scroll attractor and its application in encryption [J]. Int J Nonlin Mech 94, 334–342 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.014

    Article  ADS  Google Scholar 

  15. Ü. Çavuşoğlu, S. Panahi, A. Akgül, S. Jafari, S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption [J]. Analog Integr Circ S 2019, 98(1):85-99. https://doi.org/10.1007/s10470-018-1252-z

    Article  Google Scholar 

  16. J. Sun, Y. Shen, Q. Yin, et al., Compound synchronization of four memristor chaotic oscillator systems and secure communication [J]. Chaos 23(1), 013140 (2013). https://doi.org/10.1063/1.4794794

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T.C. Lin, F.Y. Huang, Z. Du, et al., Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication [J]. Int J Fuzzy Syst 17(2), 206–214 (2015). https://doi.org/10.1007/s40815-015-0024-5

    Article  MathSciNet  Google Scholar 

  18. S.T. Pan, C.C. Lai, Identification of chaotic systems by neural network with hybrid learning algorithm [J]. Chaos, Solitons Fractals 37(1), 233–244 (2008). https://doi.org/10.1016/j.chaos.2006.08.037

    Article  ADS  Google Scholar 

  19. S.P. Adhikari, H. Kim, R.K. Budhathoki, et al., A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses [J]. IEEE Trans Circ Syst I, Reg Pap 62(1), 215–223 (2015). https://doi.org/10.1109/TCSI.2014.2359717

    Article  Google Scholar 

  20. E.K. Lee, H.S. Pang, J.D. Park, et al., Bistability and chaos in an injection-locked semiconductor laser [J]. Phys Rev A 47(1), 736–739 (1993). https://doi.org/10.1103/PhysRevA.47.736

    Article  ADS  Google Scholar 

  21. C. Li, J.C. Sprott, W. Thio, Bistability in a hyperchaotic system with a line equilibrium [J]. J Exp Theor Phys 118(3), 494–500 (2014). https://doi.org/10.1134/S1063776114030121

    Article  ADS  Google Scholar 

  22. J.C. Sprott, S. Jafari, V.T. Pham, et al., A chaotic system with a single unstable node [J]. Phys Lett A 379(36), 2030–2036 (2015). https://doi.org/10.1016/j.physleta.2015.06.039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J.R.M. Pone, V.K. Tamba, G.H. Kom, et al., Period-doubling route to chaos, bistability and antimononicity in a jerk circuit with quintic nonlinearity [J]. International Journal of Dynamics and Control 7(1), 1–22 (2019). https://doi.org/10.1007/s40435-018-0431-1

    Article  Google Scholar 

  24. S. Lynch, Multistability, bistability and chaos control [J]. Nonlinear Anal-Theor 47(7), 4501–4512 (2001). https://doi.org/10.1016/S0362-546X(01)00563-6

    Article  MathSciNet  Google Scholar 

  25. X.Z. He, K. Li, C. Wang, Time-varying economic dominance in financial markets: a bistable dynamics approach. [J]. Chaos 28(5), 055903 (2018). https://doi.org/10.1063/1.5021141

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S.P. Dawson, C. Grebogi, J.A. Yorke, et al., Antimonotonicity: inevitable reversals of period-doubling cascades [J]. Phys Lett A 162(3), 249–254 (1992). https://doi.org/10.1016/0375-9601(92)90442-o

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Kengne, V.R.F. Signing, J.C. Chedjou, et al., Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors [J]. Int J Dyn Control 6(11), 1–18 (2017). https://doi.org/10.1007/s40435-017-0318-6

    Article  MathSciNet  Google Scholar 

  28. J. Kengne, S.M. Njikam, V.R.F. Signing, A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity [J]. Chaos, Solitons Fractals 106, 201–213 (2018). https://doi.org/10.1016/j.chaos.2017.11.027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. L. Zhou, C. Wang, X. Zhang, et al., Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-T oscillator [J]. Int J Bifurcation Chaos 28(04), 1850050 (2018). https://doi.org/10.1142/S0218127418500505

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Zhang, Y. Zeng, A simple jerk-like system without equilibrium: asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees [J]. Chaos, Solitons Fractals 120, 25–40 (2019). https://doi.org/10.1016/j.chaos.2018.12.036

    Article  ADS  MathSciNet  Google Scholar 

  31. H.P.W. Gottlieb, Question 38. What is the simplest jerk function that gives chaos [J]. Am J Phys 64, 525–525 (1996). https://doi.org/10.1119/1.18276

    Article  ADS  Google Scholar 

  32. G.A. Gottwald, I. Melbourne, On the validity of the 0-1 test for chaos [J]. Nonlinearity 22(6), 1367 (2009). https://doi.org/10.1088/0951-7715/22/6/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Wolf, J.B. Swift, H.L. Swinney, et al., Determining Lyapunov exponents from a time series [J]. Physica D 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Manai, F. Delogu, M. Rustici, Onset of chaotic dynamics in a ball mill: attractors merging and crisis induced intermittency [J]. Chaos 12(3), 601–609 (2002). https://doi.org/10.1063/1.1484016

    Article  ADS  Google Scholar 

  35. C. Li, J.C. Sprott, Multistability in the Lorenz system: a broken butterfly [J]. Int J Bifurcation Chaos 24(10), 1450131 (2014). https://doi.org/10.1142/S0218127414501314

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Kocarev, K.S. Halle, K. Eckert, et al., Experimental observation of antimonotonicity in Chua’s circuit [J]. Int J Bifurcation Chaos 3, 1051–1055 (1993). https://doi.org/10.1142/s0218127493000878

    Article  MATH  Google Scholar 

  37. B. Bocheng, X. Li, W. Ning, et al., Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles [J]. AEU Int J Electron Commun 94, 26–35 (2018). https://doi.org/10.1016/j.aeue.2018.06.042

    Article  Google Scholar 

  38. S. Zhang, Y. Zeng, Z. Li, et al., Hidden extreme multistability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium [J]. Int J Bifurcation Chaos 28(13), 1850167 (2018). https://doi.org/10.1142/S0218127418501675

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Srinivasan, K. Thamilmaran, A. Venkatesan, Effect of nonsinusoidal periodic forces in Duffing oscillator: numerical and analog simulation studies [J]. Chaos, Solitons Fractals 40(1), 319–330 (2009). https://doi.org/10.1016/j.chaos.2007.07.090

    Article  ADS  MATH  Google Scholar 

  40. I.M. Kyprianidis, I.N. Stouboulos, P. Haralabidis, et al., Antimonotonicity and chaotic dynamics in a fourth-order autonomous nonlinear electric circuit. [J]. Int J Bifurcation Chaos 10(08), 1903–1915 (2000). https://doi.org/10.1142/S0218127400001171

    Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundations of China under Grant No. 61471310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Zeng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zeng, Y. & Zeng, J. A Unique Jerk System with Abundant Dynamics: Symmetric or Asymmetric Bistability, Tristability, and Coexisting Bubbles. Braz J Phys 50, 153–163 (2020). https://doi.org/10.1007/s13538-019-00731-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00731-z

Keywords

Navigation