Skip to main content
Log in

Design of a Photonic Crystal Fiber for Dispersion Compensation and Sensing Applications Using Modified Air Holes of the Cladding

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

High birefringence and high negative dispersion with minimum confinement loss of an octagonal photonic crystal fiber is proposed using modified air holes of the cladding. This analysis indicates that the proposed photonic crystal fiber design near to square air holes provides higher 0.245 birefringence and higher − 722.48 ps/(nm × km) negative dispersion with confinement loss of 0.117 dB/km at 1.55-μm wavelength. The obtained results like birefringence and negative dispersion are high in proposed octagonal photonic crystal fiber in comparison with circular air hole–based octagonal photonic crystal fiber. Further, the proposed photonic crystal fiber is utilized for ethanol sensing, and it is observed that relative sensitivity and confinement loss are 16.97% and 4.97 × 10−3 dB/km, respectively. Hence, the proposed fiber is best suitable for application in dispersion compensation, polarization-maintaining, and sensing. Such fiber structure can easily be designed by slightly changing the structural parameter during fiber drawing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Sharma, N. Borogohain, S. Konar, Index guiding photonic crystal fibers with large birefringence and walk-ogg. IEEE J. Lightwave Tech. 31(21), 3339–3344 (2013)

    Article  ADS  Google Scholar 

  2. T. Yang, E. Wang, H. Jiang, Z. Hu, K. Xie, High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23, 8329–8337 (2015)

    Article  ADS  Google Scholar 

  3. S.M.A. Razzak, Y. Namihira, Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photon. Technol. Lett. 20(4), 249–251 (2008)

    Article  ADS  Google Scholar 

  4. M.I. Hasan, M.S. Habib, S.M.A. Razzak, An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber. IEEE Photon. Technol. Lett. 26(20), 2047–2050 (2014)

    Article  ADS  Google Scholar 

  5. M.R. Hasan, M.S. Anower, M.I. Hasan, A polarization maintaining single-mode photonic crystal fiber for residual dispersion compensation. IEEE Photon. Technol. Lett. 28(16), 1782–1785 (2016)

    Article  ADS  Google Scholar 

  6. M.F.H. Arif, M.J.H. Biddut, A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications. Sensing and Bio-Sensing Research 12, 8–14 (2017)

    Article  Google Scholar 

  7. F. Poli, A. Cucinotta, S. Selleri, Photonic crystal fibers (Springer Science & Business Media) 17-Aug-2007

  8. X. Jiang, T.G. Euser, A. Abdolvand, F. Babic, F. Tani, N.Y. Joly, J.C. Travers, P.S.J. Russell, Single-mode hollow-core photonic crystal fiber made from soft glass. Opt. Express 19, 15438–15444 (2011)

    Article  ADS  Google Scholar 

  9. M.I. Hasan, R.R. Mahmud, M. Morshed, M.R. Hasan, Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. J. Mod. Opt. 63(17), 1681–1687 (2016)

    Article  ADS  Google Scholar 

  10. Y.K. Prajapati, V.K. Srivastava, V. Singh, J.P. Saini, Effect of germanium doping on the performance of silica based photonic crystal fiber. Optik 155, 149–156 (2018)

    Article  ADS  Google Scholar 

  11. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, P. Lu, Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications. Opt. Express 21, 31690–31697 (2013)

    Article  ADS  Google Scholar 

  12. M. Vieweg, T. Gissibl, S. Pricking, B.T. Kuhlmey, D.C. Wu, B.J. Eggleton, H. Giessen, Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Express 18, 25232–25240 (2010)

    Article  ADS  Google Scholar 

  13. M. Morshed, M.I. Hassan, T.K. Roy, M.S. Uddin, S.A. Razzak, Microstructure core photonic crystal fiber for gas sensing applications. Appl. Opt. 54(29), 8637–8643 (2015)

    Article  ADS  Google Scholar 

  14. H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor. Optik 125(20), 6274–6278 (2014)

    Article  ADS  Google Scholar 

  15. D. Vigneswaran, N. Ayyanar, M.S. Mohit Sharma, M. Rajan, K. Porsezian, Salinity sensor using photonic crystal fiber. Sensors Actuators A Phys. 269, 22–28 (2018)

    Article  Google Scholar 

  16. K. Saitoh, M. Koshiba, S. Member, Full-vectorialimaginarydistance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38, 927–933 (2002)

    Article  ADS  Google Scholar 

  17. Y. Yatsenko, A. Mavritsky, D-scan measurement of nonlinear refractive index in fibers heavily doped with GeO2. Opt. Lett. 32, 3257–3259 (2007)

    Article  ADS  Google Scholar 

  18. C.M.B. Cordeiro, M.A.R. Franco, G. Chesini, E.C.S. Barretto, R. Lwin, C.H.B. Cruz, M.C.J. Large, Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 14, 13056–13066 (2006)

    Article  ADS  Google Scholar 

  19. D. Ghosh, S. Bose, S. Roy, S.K. Bhadra, Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. J. Lightwave Technol. 33(19), 4156–4162 (2015)

    Article  ADS  Google Scholar 

  20. A. Agrawal, Y.O. Azabi, B.M.A. Rahman, Staking the equianguar spiral. IEEE Photon. Technol. Lett. 25, 291–294 (2013)

    Article  ADS  Google Scholar 

  21. R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization (OFC/NFOEC Technical Digest of the Optical Fiber Communication Conference, Anaheim, 2005). https://doi.org/10.1109/OFC.2005.192772

    Google Scholar 

  22. Z. Liu, C. Wu, M.-L. Vincent Tse, C. Lu, H.-Y. Tam, Ultrahigh birefringence indexguiding photonic crystal fiber and its application for pressure and temperature discrimination. Opt. Lett. 38(9), 1385–1387 (2013)

    Article  ADS  Google Scholar 

  23. J. Patrocínio da Silva, D.S. Bezerra, V.F. Rodriguez-Esquerre, Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation. IEEE Photon. Technol. Lett. 22(18), 1337–1339 (2010)

    Article  ADS  Google Scholar 

  24. D.C. Tee, M.H.A. Bakar, N. Tamchek, F.R. MahamdAdikan, Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics J. 5(3), 7200607–7200607 (2013)

    Article  ADS  Google Scholar 

  25. M.A. Islam, M.S. Alam, Design of a polarization-maintainingequiangular spiral photonic crystal fiber for residual dispersion compensationover E + S + C + L + U wavelength bands. IEEE Photon.Technol. Lett. 24(11), 930–932 (2012)

    Article  ADS  Google Scholar 

  26. M.A. Islam, M.S. Alam, Design optimization of equiangularspiral photonic crystal fiber for large negative flat dispersion and highbirefringence. J. Lightw. Technol. 30(22), 3545–3551 (2012)

    Article  ADS  Google Scholar 

  27. M.I. Hasan, S.M.A. Razzak, M.S. Habib, Design and characterizationof highly birefringent residual dispersion compensating photoniccrystal fiber. J. Lightw. Technol. 32(23), 4578–4584 (2014)

    Article  Google Scholar 

  28. M.I. Hasan, M.S. Habib, M.S. Habib, S.M.A. Razzak, Highlynonlinear and highly birefringent dispersion compensating photoniccrystal fiber. Opt. Fiber Technol. 20, 32–38 (2014)

    Article  ADS  Google Scholar 

  29. M.S. Habib, M.S. Habib, S.M.A. Razzak, M.A. Hossain, Proposal for highly bi-refringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461–467 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Yogendra Kumar Prajapati would like to thank D. Vigneswaran, Department of Electronics and Communication Engineering, Sri Krishna College of Technology, Coimbatore, Tamilnadu, 641042, India, for helpful discussions and also thankful to Ministry of Electronics & Information Technology (Meity), India, for providing the fellowship under Visvesvaraya Scheme for Electronics and IT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, Y.K., Kumar, R. & Singh, V. Design of a Photonic Crystal Fiber for Dispersion Compensation and Sensing Applications Using Modified Air Holes of the Cladding. Braz J Phys 49, 745–751 (2019). https://doi.org/10.1007/s13538-019-00686-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00686-1

Keywords

Navigation