Skip to main content
Log in

Precision Numerical Modeling of the Decay of a Metastable State at High Temperatures

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The quasistationary decay rate of a metastable state, RD, often is interpreted as the inverse of the average lifetime of this state, τa. There are two ways for finding the rate: to evaluate it using one of the approximate Kramers formulas or to extract the rate RD from numerical modeling. We study quantitatively to what extent the inverse decay rate can be identified with the mean lifetime and to what extent the approximate and numerical quasistationary rates agree with each other. This is done for the values of dissipation strength covering 4 orders of magnitude. Both the numerical rate and the average lifetime are obtained from computer modeling of the decay process using the stochastic differential equations for the phase space diffusion. It is shown that at lower temperature, the numerical rate is in agreement with the inverse lifetime whereas at weak friction and high temperature, τa exceeds \( {R}_D^{-1} \) by up to 50%. The Kramers formula for the decay rate at strong friction is found to be in a good agreement with the dynamical rate deviating typically by 5%. For weak friction, the agreement is substantially worse: the difference varies from 20% to a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Talkner, P. Hänggi (eds.), New Trends in Kramers’ Reaction Rate Theory (Springer, Berlin, 2012)

    Google Scholar 

  2. H.-X. Zhou, Rate theories for biologists. Q. Rev. Biophys. 43, 219–293 (2010)

    Article  Google Scholar 

  3. I.I. Gontchar, M.V. Chushnyakova, N.E. Aktaev, A.L. Litnevsky, E.G. Pavlova, Disentangling effects of potential shape in the fission rate of heated nuclei. Phys. Rev. C 82, 064606 (2010)

    Article  ADS  Google Scholar 

  4. R.E. Lagos, T.P. Simões, Charged Brownian particles: Kramers and Smoluchowski equations and the hydrothermodynamical picture. Phys. A Stat. Mech. Its Appl. 390, 1591–1601 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Rosas, I.L.D. Pinto, K. Lindenberg, Kramers’ rate for systems with multiplicative noise. Phys. Rev. E 94, 012101 (2016)

    Article  ADS  Google Scholar 

  6. C.-C. Chien, S. Kouachi, K.A. Velizhanin, Y. Dubi, M. Zwolak, Thermal transport in dimerized harmonic lattices: exact solution, crossover behavior, and extended reservoirs. Phys. Rev. E 95, 012137 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.V. Chushnyakova, I.I. Gontchar, Thermal decay of a metastable state: influence of rescattering on the quasistationary dynamical rate. Phys. Rev. E 97, 032107 (2018)

    Article  ADS  Google Scholar 

  8. G. Hummer, A. Szabo, Kinetics from nonequilibrium single-Molecule pulling experiments. Biophys. J. 85, 5–15 (2003)

    Article  ADS  Google Scholar 

  9. O.K. Dudko, G. Hummer, A. Szabo, Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006)

    Article  ADS  Google Scholar 

  10. M. Abkenar, T.H. Gray, A. Zaccone, Dissociation rates from single-molecule pulling experiments under large thermal fluctuations or large applied force. Phys. Rev. E 95, 042413 (2017)

    Article  ADS  Google Scholar 

  11. D. Hilscher, H. Rossner, Dynamics of nuclear fission. Ann. Phys. (Paris). 17, 471-552 (1992)

  12. P. Paul, M. Thoennessen, Fission time scales from giant dipole resonances. Annu. Rev. Nucl. Part. Sci. 44, 65–108 (1994)

    Article  ADS  Google Scholar 

  13. K. Mazurek, C. Schmitt, P.N. Nadtochy, A.V. Cheredov, Going beyond statistical models for fission in the Businaro-Gallone region. Phys. Rev. C 94, 064602 (2016)

    Article  ADS  Google Scholar 

  14. C. Eccles, S. Roy, T.H. Gray, A. Zaccone, Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions. Phys. Rev. C 96, 054611 (2017)

    Article  ADS  Google Scholar 

  15. I.I. Gontchar, M.V. Chushnyakova, Comment on “Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions”. Phys. Rev. C 98, 029801 (2018)

    Article  ADS  Google Scholar 

  16. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I.I. Gonchar, G.I. Kosenko, Is the Kramers formula applicable for describing the decay of highly excited nuclear systems? Sov. J. Nucl. Phys. 53, 133-142 (1991)

  18. A.V. Karpov, P.N. Nadtochy, E.G. Ryabov, G.D. Adeev, Consistent application of the finite-range liquid-drop model to Langevin fission dynamics of hot rotating nuclei. J. Phys. G Nucl. Part. Phys. 29, 2365–2380 (2003)

    Article  ADS  Google Scholar 

  19. I.I. Gontchar, M.V. Chushnyakova, Thermal decay rate of a metastable state with two degrees of freedom: dynamical modelling versus approximate analytical formula. Pramana J. Phys. 88, 90 (2017)

    Article  ADS  Google Scholar 

  20. H. Risken, T. Frank, The Fokker-Planck Equation, 2nd edn. (Springer-Verlag, Heidelberg, 1996)

    MATH  Google Scholar 

  21. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, Heidelberg, 1992)

    Book  MATH  Google Scholar 

  22. P. Fröbrich, G.-R. Tillack, Path-integral derivation for the rate of stationary diffusion over a multidimensional barrier. Nucl. Phys. A 540, 353–364 (1992)

    Article  ADS  Google Scholar 

  23. I.I. Gontchar, A.E. Gettinger, L.V. Guryan, W. Wagner, Multidimensional dynamical-statistical model for describing the fission of excited nuclei. Phys. At. Nucl. 63, 1688–1708 (2000)

    Article  Google Scholar 

  24. P.N. Nadtochy, A. Kelić, K.-H. Schmidt, Fission rate in multi-dimensional Langevin calculations. Phys. Rev. C 75, 064614 (2007)

    Article  ADS  Google Scholar 

  25. M. Büttiker, E.P. Harris, R. Landauer, Thermal activation in extremely underdamped Josephson-junction circuits. Phys. Rev. B 28, 1268–1275 (1983)

    Article  ADS  Google Scholar 

  26. S. Arrhenius, Zeitschrift Für Phys. Chemie 4, 226 (1889)

    Google Scholar 

  27. O. Edholm, O. Leimar, The accuracy of Kramers’ theory of chemical kinetics. Phys. A Stat. Mech. Its Appl. 98, 313–324 (1979)

    Article  ADS  Google Scholar 

  28. P. Grangé, L. Jun-Qing, H.A. Weidenmüller, Induced nuclear fission viewed as a diffusion process: transients. Phys. Rev. C 27, 2063–2077 (1983)

    Article  ADS  Google Scholar 

  29. I.I. Gontchar, N.E. Aktaev, Importance of the relaxation stage for adequate modeling of nuclear fission accompanied by light particle emission. Phys. Rev. C 80, 044601 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chushnyakova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chushnyakova, M.V., Gontchar, I.I. Precision Numerical Modeling of the Decay of a Metastable State at High Temperatures. Braz J Phys 49, 587–593 (2019). https://doi.org/10.1007/s13538-019-00671-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00671-8

Keywords

Navigation