Skip to main content
Log in

Three-Dimensional Nonlinear Extended Zakharov-Kuznetsov Dynamical Equation in a Magnetized Dusty Plasma via Acoustic Solitary Wave Solutions

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The propagation of nonlinear three-dimensional dust-ion-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma is analyzed. Modified extended mapping method is further modified to discover dust-ion-acoustic solitary wave solutions of the nonlinear three-dimensional extended Zakharov-Kuznetsov dynamical equation. Consequently, different kinds of solitary wave solutions representing electric potential, electric and magnetic fields, and electron fluid pressure, are obtained with the help of Mathematica. The new dispersive solitary wave solutions are found in various shapes such as bright and dark solitons, periodic solitary wave solutions, and dark and bright solitary waves, that are expressed in different forms such as hyperbolic, rational, exponential, and trigonometric functions. These results demonstrate the efficiency and accuracy of the proposed method that can be applied to other nonlinear models. The results are shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.K. Shukla, A.A. Mamun. Introduction to dusty plasma physics (Institute of Physics Publishing, Bristol, 2002)

    Book  Google Scholar 

  2. A.P. Misra, Y. Wang, Dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal electrons and trapped ions. Commun. Nonlinear Sci. Numer. Simul. 22, 1360–9 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Abdullah, A.R. Seadawy, J. Wang, Modified KdV-Zakharov-Kuznetsov dynamical equation in a homogeneous magnetised electron-positron-ion plasma and its dispersive solitary wave solutions. Pramana J. Phys. 91, 26 (2018)

    Article  ADS  Google Scholar 

  4. A. Seadawy, D. Lu, Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma. Results Phys. 6, 590 (2016)

    Article  ADS  Google Scholar 

  5. A.R. Seadawy, Exact solutions of a two-dimensional nonlinear Schrödinger equation. Appl. Math. Lett. 25, 687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Coely et al. (eds.), Backlund and Darboux Transformations. Providence, RI: Amer. Math. Soc (2001)

  7. Abdullah, A.R. Seadawy, J. Wang, Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications. Result Phys. 7, 4269 (2017)

    Article  ADS  Google Scholar 

  8. A.R. Seadawy, K. El-Rashidy, Traveling wave solutions for some coupled nonlinear evolution equations by using the direct algebraic method. Math. Comput. Model. 57, 1371 (2013)

    Article  Google Scholar 

  9. I. Kourakis, W.M. Moslem, U.M. Abdelsalam, R. Sabry, P.K. Shukla, Nonlinear dynamics of rotating multi-component pair plasmas and epi plasmas. Plasma Fusion Res. 4, 111 (2009)

    Article  Google Scholar 

  10. Seadawy A.R., Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017)

    Article  Google Scholar 

  11. Y. Chen, Z. Yan, H. Zhang, Exact solutions for a family of variable-coefficient reaction-Duffing equations via the Backlund transformation. Theor. Math. Phys. 132, 9705 (2002)

    Article  Google Scholar 

  12. A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.A. Helal, A. Seadawy, M.H. Zekry, Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 232, 1094 (2014)

    MathSciNet  MATH  Google Scholar 

  14. N.M. Aslam, M.-D.S. Tauseef, W. Asif, A. Al-Said Eisa, Exp-function method for traveling wave solutions of nonlinear evolution equations. Appl. Math. Comput. 216, 47783 (2010)

    MathSciNet  MATH  Google Scholar 

  15. H.A. Ghany, Exact solutions for stochastic fractional Zakharov-Kuznetsov equations. Chin. J. Phys. 51, 875 (2013)

    MathSciNet  Google Scholar 

  16. A.H. Khater, D.K. Callebaut, M.A. Helal, A.R. Seadawy, Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line. Eur. Phys. J. D. 39, 237–245 (2006)

    Article  ADS  Google Scholar 

  17. A. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Optik – Int. J. Light Electron. Opt. 139, 31–43 (2017)

    Article  Google Scholar 

  18. A.R. Seadawy, Traveling wave solutions of the Boussinesq and generalized fifth-order KdV equations by using the direct algebraic method. Appl. Math. Sci. 6(82), 4081–4090 (2012)

    MathSciNet  MATH  Google Scholar 

  19. A. Seadawy, Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus. 130(9), 182 (2015)

    Article  Google Scholar 

  20. A. Seadawy, Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods. Eur. Phys. J. Plus. 132(12), 518 (2017)

    Article  Google Scholar 

  21. A.R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear KadomtsevPetviashviliBurgers equation in quantum plasma. Math. Methods Appl. Sci. 40(5), 1598–1607 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Asghar, A.R. Seadawy, L. Dianchen, New solitary wave solutions of some nonlinear models and their applications. Adv. Diff. Equa. 1, 232 (2018)

  23. M.A. Helal, A.R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications. Phys. Scr. 80, 350–360 (2009)

    Article  MATH  Google Scholar 

  24. A.H. Khater, D.K. Callebaut, A.R. Seadawy, General soliton solutions of an n-dimensional complex Ginzburg-Landau equation. Phys. Scr. 62, 353–357 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Arshad, A. Seadawy, L. Dianchen, Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrödinger equation and its stability. Optik. 138, 409 (2017)

    Article  Google Scholar 

  26. Abdullah, A. Seadawy, J. Wang, New mathematical model of vertical transmission and cure of vector-borne diseases and its numerical simulation. Adv. Diff. Equa. 66, 1–15 (2018)

    MathSciNet  Google Scholar 

  27. A. Asghar, A.R. Seadawy, L. Dianchen, Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability. Optik. 7988, 79–88 (2017)

    Google Scholar 

  28. L. Dianchen, A.R. Seadawy, M. Arshad, W. Jun, New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications. Results Phys. 7, 899–909 (2017)

    Article  ADS  Google Scholar 

  29. M. Arshad, A. Seadawy, L. Dianchen, W. Jun, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016)

    Article  ADS  Google Scholar 

  30. N. Ali, G. Zaman, A.A.M Abdullah, Alshomrani A.S., The effects of time lag and cure rate on the global dynamics of HIV-1 model. BioMed Res. Int. Article ID 8094947 (2017)

  31. Z.M. Liu, W.S. Duan, G.J. He, Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas. Phys. Plasmas. 15, 083702 (2008)

    Article  ADS  Google Scholar 

  32. A.R. Seadawy, Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 17280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.R. Seadawy, Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas. 21, 052107 (2014)

    Article  ADS  Google Scholar 

  34. Z. Hui-Ling, T. Bo, W. Yu-Feng, S. Wen-Rong, L. Li-Cai, Soliton solutions and chaotic motion of the extended Zakharov–Kuznetsov equations in a magnetized two-ion-temperature dusty plasma. Phys. Plasmas. 21, 073709 (2014)

    Article  ADS  Google Scholar 

  35. A.R. Seadawy, Three-dimensional weakly nonlinear shallow water waves regime and its travelling wave solutions. Int. J. Comput. Methods 15(1) (2018)

  36. E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equation. Phys. Lett. A. 372, 1048–106 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. H.C. Ma, Y.D. Yu, D.-J. Ge, New exact traveling wave solutions for the modified form of Degasperis–Procesi equation. Appl. Math. Comp. 203, 792–798 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, Seadawy, A.R. & Wang, J. Three-Dimensional Nonlinear Extended Zakharov-Kuznetsov Dynamical Equation in a Magnetized Dusty Plasma via Acoustic Solitary Wave Solutions. Braz J Phys 49, 67–78 (2019). https://doi.org/10.1007/s13538-018-0617-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0617-1

Keywords

Navigation