Skip to main content
Log in

Sliding and Dry Friction: Prandtl-Tomlinson Athermal Model Revisited

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The microscopic origin of friction has been the goal of several theoretical studies in the last decades. Depending on the investigated systems or models, on the simulation techniques or conditions, different and somewhat contradictory results have been found, even when using the same model. In this contribution, we address this apparent paradox in a well-known case, the Prandtl-Tomlinson model at zero temperature, studying the force-velocity relation for a wide range of velocities not previously presented. Including much more data density for the non-trivial regions, we are able to shed light on this problem and at the same time, provide new insight in the use of the paradigmatic Tomlinson model for the secular problem of friction laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The period of oscillation of the cantilever is 20 μ s and the maximum simulated speed is 1 mm/s, so that time step is more that 1000 times smaller that the period and at the maximum speed it moves only 1/300 of the potential length

References

  1. B.N.J. Persson. Sliding Friction Physical Principles and Applications (Springer, Berlin, 2000)

    Book  Google Scholar 

  2. J. Krim, Surface science and the atomic-scale origins of friction: what once was old is new again. Surf. Sci. 500(1–3), 741–758 (2002)

    Article  ADS  Google Scholar 

  3. L. Makkonen, A thermodynamic model of sliding friction. AIP Advances. 2(1), 012179 (2012)

    Article  ADS  Google Scholar 

  4. B.N.J. Persson. Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2013)

    MATH  Google Scholar 

  5. A. Fall, B. Weber, M. Pakpour, N. Lenoir, N. Shahidzadeh, J. Fiscina, C. Wagner, D. Bonn, Sliding friction on wet and dry sand. Phys. Rev. Lett. 112(17), 175502 (2014)

    Article  ADS  Google Scholar 

  6. T. Baumberger, Dry friction dynamics at low velocities. springer science business media (1996)

    Google Scholar 

  7. M.H. Müser, L. Wenning, M.O. Robbins, Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86(7), 1295–1298 (2001)

    Article  ADS  Google Scholar 

  8. F.P. Bowden, The friction and lubrication of solids. Am. J. Phys. 19(7), 428 (1951)

    Article  ADS  Google Scholar 

  9. G. Binnig, C.F. Queswdate, C.h. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  10. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Shirley, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942–1945 (1987)

    Article  ADS  Google Scholar 

  11. S. Fujisawa, E. Kishi, Y. Sugawara, S. Morita, Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys. Rev. B. 51(12), 7849–7857 (1995)

    Article  ADS  Google Scholar 

  12. G.A. Tomlinson, CVI. A molecular theory of friction. The London Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 7(46), 905–939 (1929)

    Article  Google Scholar 

  13. L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen körper. ZAMM. 8, 85–106 (1928)

    Article  ADS  Google Scholar 

  14. L. Prandtl. Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen III (Intern. Math. Kongress, Heidelberg, 1904), p. 484

    Google Scholar 

  15. L. Prandtl. Über die Härte plastischer Körper (Nachrichten Göttinger Akad, Wiss, 1920)

    Google Scholar 

  16. M.H. Müser, M. Urbakh, M.O. Robbins, in Statistical mechanics of static and low-velocity kinetic friction. Advances in chemical physics, ed. by I. Prigogine, S.A. Rice, Vol. 126, (2003), pp. 187–272

  17. V. Popov, J.A.T. Gray, Prandtl-Tomlinson Model: a simple model which made history. ISBN 978-3-642-39904-6 153–168 (2014)

  18. J.J. Mazo, D. Dietzel, A. Schirmeisen, J.G. Vilhena, E. Gnecco, Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118(24), 246101 (2017)

    Article  ADS  Google Scholar 

  19. T. Kontorova, J. Frenkel, On the theory of plastic deformation and twinning II. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938)

    MATH  Google Scholar 

  20. J. Frenkel, T. Kontorova, On the theory of plastic deformation and twinning. Izv. Akad. Nauk, Ser. Fiz. 1, 137–149 (1939)

    MathSciNet  MATH  Google Scholar 

  21. O.M. Braun, Y.S. Kivshar. The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  22. A. Buldum, S. Ciraci, Atomic-scale study of dry sliding friction. Phys. Rev. B. 55, 2606–2611 (1997)

    Article  ADS  Google Scholar 

  23. S. Gonçalves, V.M. Kenkre, A.R. Bishop, Nonlinear friction of a damped dimer sliding on a periodic substrate. Phys. Rev. B. 70(19), 195415 (2004)

    Article  ADS  Google Scholar 

  24. S. Gonçalves, C. Fusco, A.R. Bishop, V.M. Kenkre, Bistability and hysteresis in the sliding friction of a dimer. Phys. Rev. B. 72, 195418 (2005)

    Article  ADS  Google Scholar 

  25. C. Fusco, A. Fasolino, Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B, 71(4) (2005)

  26. M. Tiwari, S. Gonçalves, V.M. Kenkre, Generalization of a nonlinear friction relation for a dimer sliding on a periodic substrate. The European Physical Journal B. 62(4), 459–464 (2008)

    Article  ADS  Google Scholar 

  27. I.G. Neide, V.M. Kenkre, S. Gonçalves, Effects of rotation on the nonlinear friction of a damped dimer sliding on a periodic substrate. Phys. Rev. E 82(4) (2010)

  28. O. Zworner, H. Holscher, U.D. Schwarz, R. Wiesendanger, The velocity dependence of frictional forces in point-contact friction. Appl. Phys. Mater. Sci. Process. 66(7), S263–S267 (1998)

    Article  ADS  Google Scholar 

  29. T. Bouhacina, J.P. Aimé, S. Gauthier, D. Michel, V. Heroguez, Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys. Rev. B. 56(12), 7694–7703 (1997)

    Article  ADS  Google Scholar 

  30. R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E.M. Yer, H.J. Güntherodt, Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B. 60(16), R11301–R11304 (1999)

    Article  ADS  Google Scholar 

  31. E. Gnecco, R. Bennewitz, T. Gyalog, C.h. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt, Velocity dependence of atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)

    Article  ADS  Google Scholar 

  32. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune, Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)

    Article  ADS  Google Scholar 

  33. L. Qunyang, D. Yalin, D. Perez, A. Martini, R.W. Carpick, Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 126101 (2011)

    Article  ADS  Google Scholar 

  34. K.B. Jinesh, S.Y. Krylov, H. Valk, M. Dienwiebel, J.W.M. Frenken, Thermolubricity in atomic-scale friction. Phys. Rev. B. 78(15), 155440 (2008)

    Article  ADS  Google Scholar 

  35. Y. Sang, M. Dubé, M. Grant, Thermal Effects on Atomic Friction. Phys. Rev. Lett. 87(17) (2001)

  36. D. Tománek, W. Zhong, H. Thomas, Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys. Lett. (EPL,). 15(8), 887–892 (1991)

    Article  ADS  Google Scholar 

  37. L. Verlet, Computer experiments on classical fluids. II. Equilibrium correlation. Phys. Rev. 165(1), 201–214 (1968)

    Article  ADS  Google Scholar 

  38. H. Hölscher, U.D. Schwarz, R. Wiesendanger, Modelling of the scan process in lateral force microscopy. Surf. Sci. 375(2–3), 395–402 (1997)

    Article  ADS  Google Scholar 

  39. Engauge Digitizer, https://markummitchell.github.io/engauge-digitizer/. Accessed 24 Sept 2018

  40. C. Apostoli, G. Giusti, J. Ciccoianni, G. Riva, R. Capozza, R.L. Woulaché, A. Vanossi, E. Panizon, N. Manini, Velocity dependence of sliding friction on a crystalline surface. Beilstein J. Nanotechnol. 8, 2186–2199 (2017)

    Article  Google Scholar 

  41. E. Gnecco, R. Roth, A. Baratoff, Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B. 86, 035443 (2012)

    Article  ADS  Google Scholar 

  42. E. Granato, S.C. Ying, Non-monotonic velocity dependence of atomic friction. Tribol. Lett. 39(3), 229–233 (2010)

    Article  Google Scholar 

  43. J. Chen, I. Ratera, J.Y. Park, M. Salmeron, Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 236102 (2006)

    Article  ADS  Google Scholar 

  44. Y. Diao, R. Espinosa-Marzal, The role of water in fault lubrication. Nat. Commun. 9, 2309 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centro Latinoamericano de Física (CLAF), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Funding

This study was funded and part by the Coordenação de Aperfeiçõamento de Pessoal de Nível Superior—Brasil(CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luján Iglesias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, M.L., Gonçalves, S. Sliding and Dry Friction: Prandtl-Tomlinson Athermal Model Revisited. Braz J Phys 48, 585–591 (2018). https://doi.org/10.1007/s13538-018-0610-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0610-8

Keywords

Navigation