Advertisement

Brazilian Journal of Physics

, Volume 48, Issue 3, pp 281–285 | Cite as

Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

  • Fei Li
  • Wenwu Li
  • Lan Xu
Statistical
  • 69 Downloads

Abstract

The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system’s chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

Keywords

Josephson junction Ratchet potential Melnikov function Chaos 

Notes

Funding Information

This work was supported by the Natural Science Foundation of Hunan Province (2016JJ6020) and the Scientific Research Fund of Hunan First normal University (XYS13N16).

References

  1. 1.
    V.N. Belykh, N.F. Pedersen, O.H. Soerensen, Phys. Rev. B. 16, 4853 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    V.N. Belykh, N.F. Pedersen, O.H. Soerensen, Phys. Rev. B. 16, 4860 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Huberman, J.A. Crutchfield, N.H. Packard, Appl. Phys. Lett. 750, 37 (1980)Google Scholar
  4. 4.
    Z.G. Genchev, Z.G. Ivanov, B.N. Todorov, IEEE Trans. Circuits Syst. CAS. 30, 633 (1983)CrossRefGoogle Scholar
  5. 5.
    M. Cirillo, N.F. Pedersen, Phys. Lett. A. 90, 150 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    M. Octavio, Phys. Rev. B. 29, 1231 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    M. Bartuccelli, P.L. Christiansen, N.F. Pedersen, M.P. Soerensen, Phys. Rev. B. 33, 4686 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    G. Cicogna, L. Fronzoni, Phys. Rev. A. 42, 1901 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    G. Cicogna, Phys. Lett. A. 121, 403 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    G. Cicogna, Phys. Lett. A. 131, 98 (1988)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    X. Yao, J.Z. Wu, C.S. Ting, Phys. Rev. B. 42, 244 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    T. Hesselroth, Phys. Rev. E. 48, 46 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    W. Hai, Y. Xiao, J. Fang, W. Huang, X. Zhang, Phys. Lett. A. 265, 128 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    W. Hai, X. Zhang, W. Huang, G. Chong, Int. J. Bifurcation and Chaos. 11, 2263 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    W. Hai, Y. Xiao, G. Chong, Q. Xie, Phys. Lett. A. 295, 220 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S. Al-Khawaja, Phys. C. 420, 30 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S. Al-Khawaja, M. Alsous, Chaos Solitons and Fractals. 26, 723 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    I. Zapata, R. Bartussek, F. Sols, P. Hänggi, Phys. Rev. Lett. 77, 2292 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Mateos, Phys. Rev. Lett. 84, 258 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    A. Uçar, K. Lonngren, E. Bai, Chaos Solitons and Fractals. 31, 105 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C.R. Nayak, V.C. Kuriakose, Phys. Lett. A. 365, 284 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    C.W. Lim, S.K. Lai, Phys. Lett. A. 368, 289 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Wu, F. Li, Chin. Phys. Lett. 27, 640 (2007)ADSGoogle Scholar
  24. 24.
    F. Li, B. Zhou, W. Shu, H. Luo, Z. Huang, L. Tian, Eur. Phys. J. D. 50, 75 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    F. Li, C. Pan, D. Zhang, L. Tang, Chin. Phys. Lett. 27, 050501 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Fang, W. Hai, G. Chong, Q. Xie, Phys. A. 349, 133 (2005)CrossRefGoogle Scholar
  27. 27.
    F. Li, W. Shu, J. Jiang, H. Luo, Z. Ren, Eur. Phys. J. D. 41, 355 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    F. Li, W. Shu, H. Luo, Z. Ren, Chin. Phys. 16, 650 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    F. Li, Z. Ren, H. Luo, W. Shu, Q. Wu, Commun. Theor. Phys. 48, 107 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    F. Li, D. Zhang, W. Li, Acta Phys. Sin. 60, 120304 (2011)Google Scholar
  31. 31.
    F. Li, D. Zhang, S. Rong, Y. Xu, J. Exp. Theor. Phys. 117, 800 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    F. Li, L. Xu, W. Li, Braz. J. Phys. 48, 1 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    E. Bollt, Y. Lai, C. Grebogi, Phys. Rev. Lett. 79, 3787 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    J.G. Ojalvo, R. Roy, Phys. Rev. Lett. 86, 5204 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science. 296, 886 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Yu, S. Han, X. Chu, S. Chu, Z. Wang, Science. 296, 889 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Martinis, S. Nam, J. Aumentado, C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Department of Science EducationHunan First Normal UniversityChangshaChina

Personalised recommendations