Advertisement

Brazilian Journal of Physics

, Volume 48, Issue 3, pp 249–265 | Cite as

Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

  • A. Jalili Majarshin
  • H. Sabri
Nuclear Physics
  • 65 Downloads

Abstract

It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \(\widehat {SU(1,1)}\) approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 − 102Mo isotopes.

Keywords

Quantum phase transition (QPT) Signatures of quantum phase transition Interacting boson model (IBM) Shape coexistence configuration Affine \(\widehat {SU(1,\protect 1)}\) approach 

Notes

Acknowledgements

It is a pleasure to thank José Enrique García Ramos from University of Huelva, for discussions and his assistance and effective collaboration.

References

  1. 1.
    F. Iachello, Dynamic symmetries at the critical point. Phys. Rev. Lett. 85(17), 3580 (2000)ADSGoogle Scholar
  2. 2.
    R.F. Casten, N.V. Zamfir, Empirical realization of a critical point description in atomic nuclei. Phys. Rev. Lett. 87(5), 052503 (2001)ADSGoogle Scholar
  3. 3.
    F. Iachello, A. Arima. The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)Google Scholar
  4. 4.
    J. Jolie et al., Quantum phase transition for γ-soft nuclei. Phys. Rev. Lett. 87(16), 162–501 (2001)Google Scholar
  5. 5.
    R.F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei. Nat. Phys. 2(12), 811–820 (2006)Google Scholar
  6. 6.
    P. Cejnar, J. Jolie, Quantum phase transitions in the interacting boson model. Prog. Part. Nucl. Phys. 62 (1), 210–256 (2009)ADSGoogle Scholar
  7. 7.
    J. E. García-Ramos, J.M. Arias, J. Dukelsky, Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory. Phys. Lett. B. 736, 333–338 (2014)ADSzbMATHGoogle Scholar
  8. 8.
    P. Cejnar, P. Stránský, Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems. Phys. Scr. 91(8), 083006 (2016)ADSGoogle Scholar
  9. 9.
    A. Jalili Majarshin, M.A. Jafarizadeh, N. Fouladi, The European Physical Journal Plus. 131, 1 (2016)Google Scholar
  10. 10.
    A. Jalili Majarshin, H. Sabri, Nucl. Phys. A. 964, 69–85 (2017)ADSGoogle Scholar
  11. 11.
    L Dai, F Pan, J.P. Draayer, An exact solution of spherical mean-field plus a special separable pairing model. Nucl. Phys. A. 957, 51–59 (2017)ADSGoogle Scholar
  12. 12.
    F. Pan et al., Exact solution of the mean-field plus separable pairing model reexamined. Phys. Rev. C. 95(3), 034308 (2017)ADSGoogle Scholar
  13. 13.
    A. Jalili Majarshin, M.A. Jafarizadeh, Nucl. Phys. A. 968, 287–325 (2017)ADSGoogle Scholar
  14. 14.
    F Pan, J.P. Draayer, New algebraic solutions for S O(6) → U(5) transitional nuclei in the interacting boson model. Nucl. Phys. A. 636(2), 156–168 (1998)ADSGoogle Scholar
  15. 15.
    F. Pan, X. Zhang, J. Draayer, Algebraic solutions of an sl-boson system in the U(2l + 1) → O(2l + 2) transitional region. J. Phys. A Math. Gen. 35, 7173 (2002)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    C. Bahri, D.J. Rowe, W. Wijesundera, Phase transition in the pairing-plus-quadrupole model. Phys. Rev. C. 58(3), 1539 (1998)ADSGoogle Scholar
  17. 17.
    A.E.L. Dieperink, O. Scholten, On shapes and shape phase transitions in the interacting boson model. Nucl. Phys. A. 346(1–2), 125–138 (1980)ADSMathSciNetGoogle Scholar
  18. 18.
    J.E. García-Ramos et al., Phase transitions and critical points in the rare-earth region. Phys. Rev. C. 68 (2), 024307 (2003)ADSMathSciNetGoogle Scholar
  19. 19.
    F. Iachello, N.V. Zamfir, Quantum phase transitions in mesoscopic systems. Phys. Rev. Lett. 92(21), 212501 (2004)ADSGoogle Scholar
  20. 20.
    P. Cejnar, F. Iachello, Phase structure of interacting boson models in arbitrary dimension. J. Phys. A Math. Theor. 40(4), 581 (2007)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    P. Cejnar, J. Jolie, R.F. Casten, Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 82(3), 2155 (2010)ADSGoogle Scholar
  22. 22.
    C.E. Alonso, J.M. Arias, A. Vitturi, Shape phase transition in odd nuclei in a multi-j model: the U B(6) ⊗ U F(12) case. Phys. Rev. C. 75(6), 064316 (2007)ADSGoogle Scholar
  23. 23.
    M.A. Caprio, F. Iachello, Phase structure of the two-fluid proton-neutron system. Phys. Rev. Lett. 93(24), 242502 (2004)ADSGoogle Scholar
  24. 24.
    M.A. Caprio, J.H. Skrabacz, F. Iachello, Dual algebraic structures for the two-level pairing model. J. Phys. A Math. Theor. 44(7), 075303 (2011)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    D. Bonatsos et al., Simple empirical order parameter for a first-order quantum phase transition in atomic nuclei. Phys. Rev. Lett. 100(14), 142501 (2008)ADSGoogle Scholar
  26. 26.
    K. Nomura, T. Nikšic, D. Vretenar, Signatures of shape phase transitions in odd-mass nuclei. Phys. Rev. C. 94(6), 064310 (2016)ADSGoogle Scholar
  27. 27.
    X. Guan et al., Ground state phase transition in the Nilsson mean-field plus standard pairing model. Phys. Rev. C. 94(2), 024309 (2016)ADSGoogle Scholar
  28. 28.
    Y. Zhang, F. Iachello, Two-nucleon transfer reactions as a test of quantum phase transitions in nuclei. Phys. Rev. C. 95(3), 034306 (2017)ADSGoogle Scholar
  29. 29.
    A. Jalili Majarshin, M.A. Jafarizadeh, H. Sabri, The European Physical Journal Plus. 132, 418 (2017)ADSGoogle Scholar
  30. 30.
    P.S. Turner, D.J. Rowe, Phase transitions and quasidynamical symmetry in nuclear collective models. II. The spherical vibrator to gamma-soft rotor transition in an SO (5)-invariant Bohr model. Nucl. Phys. A. 756(3–4), 333–355 (2005)ADSGoogle Scholar
  31. 31.
    R.F. Casten, D.D. Warner, The interacting boson approximation. Rev. Mod. Phys. 60(2), 389 (1988)ADSMathSciNetGoogle Scholar
  32. 32.
    A. Bohr, The coupling of nuclear surface oscillations to the motion of individual nucleons. Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd 26 (1952)Google Scholar
  33. 33.
    E. Chacón, M. Moshinsky, Group theory of the collective model of the nucleus. J. Math. Phys. 18(5), 870–880 (1977)ADSGoogle Scholar
  34. 34.
    T. Thomas, K. Nomura, V. Werner, T. Ahn, N. Cooper, H. Duckwitz, D. Radeck, Evidence for shape coexistence in 98 Mo. Phys. Rev. C. 88(4), 044305 (2013)ADSGoogle Scholar
  35. 35.
    H. Lehmann, J. Jolie, Nucl. Phys. A. 588, 623 (1995)ADSGoogle Scholar
  36. 36.
    K. Heyde, J.L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83(4), 1467 (2011)ADSGoogle Scholar
  37. 37.
    T. Thomas et al., Evidence for shape coexistence in 98Mo. Phys. Rev. C. 88(4), 044305 (2013)ADSMathSciNetGoogle Scholar
  38. 38.
    J. E. García-Ramos, K. Heyde, Nuclear shape coexistence: a study of the even-even Hg isotopes using the interacting boson model with configuration mixing. Phys. Rev. 89(1), 014306 (2014)ADSGoogle Scholar
  39. 39.
    A. Arima, F. Iachello, Interacting boson model of collective states I. The vibrational limit. Ann. Phys. 99 (2), 253–317 (1976)ADSGoogle Scholar
  40. 40.
    A. Arima, F. Iachello, Interacting Boson model of collective nuclear states II. The rotational limit. Ann. Phys. 111(1), 201–238 (1978)ADSGoogle Scholar
  41. 41.
    A. Arima, F. Iachello, Interacting boson model of collective nuclear states IV. The O(6) limit. Ann. Phys. 123(2), 468–492 (1979)ADSGoogle Scholar
  42. 42.
    F. Iachello. Boson Realizations. Lie Algebras and Applications (Springer, Berlin, 2015), pp. 125–173Google Scholar
  43. 43.
    A. Arima, F. Iachello, Annu. Rev. Nucl. Sci.; (United States) 31 (1981)Google Scholar
  44. 44.
    M. Caprio, J. Skrabacz, F. Iachello, J. Phys. A Math. Theor. 44, 075303 (2011)ADSGoogle Scholar
  45. 45.
    H. Ui, su (1, 1) quasi-spin formalism of the many-boson system in a spherical field. Ann. Phys. 49(1), 69–92 (1968)ADSGoogle Scholar
  46. 46.
    G. Rosensteel, D.J. Rowe, Phase transitions and quasi-dynamical symmetry in nuclear collective models, III: The U(5) to SU(3) phase transition in the IBM. Nucl. Phys. A. 759(1–2), 92–128 (2005)ADSGoogle Scholar
  47. 47.
    Y. Zhang et al., Euclidean dynamical symmetry in nuclear shape phase transitions. Phys. Lett. B. 732, 55–58 (2014)ADSGoogle Scholar
  48. 48.
    Y. Zhang et al., Critical point symmetry for the spherical to triaxially deformed shape phase transition. Phys. Lett. B. 751, 423–429 (2015)ADSGoogle Scholar
  49. 49.
    F Pan et al., Alternative solvable description of the E(5) critical point symmetry in the interacting boson model. Phys. Rev. C. 91(3), 034305 (2015)ADSGoogle Scholar
  50. 50.
    M.A. Caprio, F. Iachello, Analytic descriptions for transitional nuclei near the critical point. Nucl. Phys. A. 781(1–2), 26–66 (2007)ADSGoogle Scholar
  51. 51.
    M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de spin. J. Phys. 37(10), 1087–1098 (1976)MathSciNetGoogle Scholar
  52. 52.
    F. Pan et al., The extended Heine–Stieltjes polynomials associated with a special LMG model. J. Phys. A Math. Theor. 44(39), 395305 (2011)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Z.P. Li et al., Microscopic description of spherical to γ-soft shape transitions in Ba and Xe nuclei. Phys. Rev. C. 81(3), 034316 (2010)ADSGoogle Scholar
  54. 54.
    R.M. Clark et al., Searching for E(5) behavior in nuclei. Phys. Rev. C. 69(6), 064322 (2004)ADSGoogle Scholar
  55. 55.
    T. Thomas et al., Nuclear structure of 96, 98 mo: shape coexistence and mixed-symmetry states. Nucl. Phys. A. 947, 203–233 (2016)ADSGoogle Scholar
  56. 56.
    G.H. Bhat et al., Unified description of rotational and quasiparticle-band structures in neutron-rich mass 110 region. Nucl. Phys. A. 947, 127–141 (2016)ADSGoogle Scholar
  57. 57.
    J. Xiang et al., Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈ 100. Phys. Rev. C. 93(5), 054324 (2016)ADSGoogle Scholar
  58. 58.
    B. Singh, Z. Hu, Nucl. Data Sheets. 98, 335 (2003)ADSGoogle Scholar
  59. 59.
    B. Singh, Nucl. Data Sheets. 109, 297 (2008)ADSGoogle Scholar
  60. 60.
    D. De Frenne, Nucl. Data Sheets. 110, 1745 (2009)ADSGoogle Scholar
  61. 61.
    F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87(5), 052502 (2001)ADSGoogle Scholar
  62. 62.
    R.F. Casten, N.V. Zamfir, Evidence for a possible E(5) symmetry in 134Ba. Phys. Rev. Lett. 85(17), 3584 (2000)ADSGoogle Scholar
  63. 63.
    K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)ADSGoogle Scholar
  64. 64.
    A. Jalili Majarshin, Eur. Phys. J. A. 54, 11 (2018)ADSGoogle Scholar
  65. 65.
    R.J. Casperson, V. Werner, S. Heinze, Phys. Lett. B. 721, 51 (2013)ADSGoogle Scholar
  66. 66.
    V. Werner et al., Phys. Lett. B. 550, 140 (2002)ADSGoogle Scholar
  67. 67.
    G.S. Simpson et al., Phys. Rev. C. 74, 064308 (2006)ADSGoogle Scholar
  68. 68.
    A. Chakraborty et al., Phys. Rev. Lett. 110, 022504 (2013)ADSGoogle Scholar
  69. 69.
    W. Urban et al., Phys. Rev. C. 87, 031304 (2013)ADSGoogle Scholar
  70. 70.
    T. Otsuka, A. Arima, F. Iachello, Nucl. Phys. A. 309, 1 (1978)ADSGoogle Scholar
  71. 71.
    M.A. Jafarizadeh, A. Jalili Majarshin, N. Fouladi, Int. J. Mod. Phys. E 1650089 (2016)Google Scholar
  72. 72.
    M.A. Jafarizadeh et al., Investigation of quantum phase transitions in the spdf interacting boson model based on dual algebraic structures for the four-level pairing model. J. Phys. G: Nucl. Part. Phys. 43(9), 095108 (2016)ADSGoogle Scholar
  73. 73.
    A.E.L. Dieperink, O. Scholten, F. Iachello, Classical limit of the interacting-boson model. Phys. Rev. Lett. 44(26), 1747 (1980)ADSGoogle Scholar
  74. 74.
    I. Bentley, S. Frauendorf, Microscopic calculation of interacting boson model parameters by potential-energy surface mapping. Phys. Rev. C. 83(6), 064322 (2011)ADSGoogle Scholar
  75. 75.
    L.M. Robledo, R. R. Rodríguez-Guzmán, P. Sarriguren, Evolution of nuclear shapes in medium mass isotopes from a microscopic perspective. Phys. Rev. C. 78(3), 034314 (2008)ADSGoogle Scholar
  76. 76.
    K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Structural evolution in A ≈ 100 nuclei within the mapped interacting boson model based on the Gogny energy density functional. Phys. Rev. C. 94 (4), 044314 (2016)ADSGoogle Scholar
  77. 77.
    F. -Q. Chen, J. Luis Egido, Triaxial shape fluctuations and quasiparticle excitations in heavy nuclei. Phys. Rev. C. 95(2), 024307 (2017)ADSGoogle Scholar
  78. 78.
    A. Jalili Majarshin, H. Sabri, Energy surfaces of 100 − 106Ru isotopes in the U(5) to SO(9) transitional region. Nucl. Phys. A. 964, 69–85 (2017)ADSGoogle Scholar
  79. 79.
    H. Sabri, M. Seidi, Energy spectra and E 2 transition rates of 124 − 130Ba. Int. J. Mod. Phys. E. 25(10), 1650086 (2016)ADSGoogle Scholar
  80. 80.
    R. Gilmore, The classical limit of quantum nonspin systems. J. Math. Phys. 20(5), 891–893 (1979)ADSMathSciNetGoogle Scholar
  81. 81.
    T. Nikšić et al., Microscopic description of nuclear quantum phase transitions. Phys. Rev. Lett. 99(9), 092502 (2007)ADSGoogle Scholar
  82. 82.
    R.F. Casten, Quantum phase transitions and structural evolution in nuclei. Prog. Part. Nucl. Phys. 62(1), 183–209 (2009)ADSGoogle Scholar
  83. 83.
    M.A. Caprio, Effects of βγ coupling in transitional nuclei and the validity of the approximate separation of variables. Phys. Rev. C. 72(5), 054323 (2005)ADSGoogle Scholar
  84. 84.
    R.F. Casten, E.A. McCutchan, Quantum phase transitions and structural evolution in nuclei. J. Phys. G: Nucl. Part. Phys. 34(7), R285 (2007)ADSGoogle Scholar
  85. 85.
    J.M. Arias, J. Dukelsky, J. E. García-Ramos, Quantum phase transitions in the interacting boson model: integrability, level repulsion, and level crossing. Phys. Rev. Lett. 91(16), 162–502 (2003)Google Scholar
  86. 86.
    Y. Alhassid, N. Whelan, Chaotic properties of the interacting-boson model: a discovery of a new regular region. Phys. Rev. Lett. 67(7), 816 (1991)ADSGoogle Scholar
  87. 87.
    N. Whelan, Y. Alhassid, Chaotic properties of the interacting boson model. Nucl. Phys. A. 556(1), 42–66 (1993)ADSGoogle Scholar
  88. 88.
    J. Jolie et al., Shape phase transitions in odd-mass nuclei using a supersymmetric approach. Phys. Rev. C. 70(1), 011305 (2004)ADSGoogle Scholar
  89. 89.
    J.M. Arias et al., Two-level interacting boson models beyond the mean field. Phys. Rev. C. 75(1), 014301 (2007)ADSGoogle Scholar
  90. 90.
    R.J. Casperson, V. Werner, S. Heinze, Hexadecapole degree of freedom in 94Mo. Phys. Lett. B. 721(1), 51–55 (2013)ADSGoogle Scholar
  91. 91.
    F. Pérez-Bernal, F. Iachello, Algebraic approach to two-dimensional systems: shape phase transitions, monodromy, and thermodynamic quantities. Phys. Rev. A. 77(3), 032115 (2008)ADSMathSciNetzbMATHGoogle Scholar
  92. 92.
    M. Macek, J. Dobeš, P. Cejnar, Transition from γ-rigid to γ-soft dynamics in the interacting boson model: Quasicriticality and quasidynamical symmetry. Phys. Rev. C. 80(1), 014319 (2009)ADSGoogle Scholar
  93. 93.
    Y. Luo et al., Quantum phase transitional patterns in the SD-pair shell model. Phys. Rev. C. 80(1), 014311 (2009)ADSGoogle Scholar
  94. 94.
    J.E. Garcia-Ramos et al., Two-neutron separation energies, binding energies and phase transitions in the interacting boson model. Nucl. Phys. A. 688(3–4), 735–754 (2001)ADSGoogle Scholar
  95. 95.
    M.R. Oudih et al., Microscopic analysis of shape evolution in mo isotopes. Mod. Phys. Lett. A. 28(30), 1350134 (2013)ADSGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TabrizTabrizIran

Personalised recommendations