Skip to main content

Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

Abstract

We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid’s structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Y. Lin, P. Alexandridis, Temperature dependent adsorption of pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J. Phys. Chem. B 106, 10834–10844 (2002)

    Article  Google Scholar 

  2. N. Aich, L.K. Boateng, J.R.V. Flora, N.B. Saleh, Preparation of non-aggregating aqueous fullerenes in highly saline solutions with biocompatible non-ionic polymer. Nanotechnology 24, 395602 (2013)

    Article  Google Scholar 

  3. G. Ciofani, V. Raffa, V. Pensabene, A. Menciassi, P. Daripo, Dispersion of multi-walled carbon nanotubes in aqueous pluronic F127 solutions for biological applications. Fullerenes Nanotubes Carbon Nanostruct. 17, 11–25 (2009)

    ADS  Article  Google Scholar 

  4. I. Szleifer, R. Yerushalmi-Rozen, Polymers and carbon nanotubes-dimensionality. Interactions Nanotechnol. 46, 7803–7818 (2005)

    Google Scholar 

  5. R. Yerushalmi-Rozen, I. Szleifer, Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Softmatter 2, 24–28 (2006)

    ADS  Google Scholar 

  6. S. Chen, Y. Li, C. Guo, J. Wang, J. Ma, X. Liang, L. Yang, H. Liu, Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23, 12669–12676 (2007)

    Article  Google Scholar 

  7. R. Nap, I. Szleifer, Control of carbon nanotube-surface interactions: the role of grafted polymers. Langmuir 21, 12072–12075 (2005)

    Article  Google Scholar 

  8. R. Shvartzman-Cohen, M. Florent, D. Goldfarb, I. Szleifer, R. Yerushalmi-Rozen, Aggregation and self-assembly of amphiphilic block copolymers in aqueous dispersions of carbon nanotubes. Langmuir 24, 4625–4632 (2008)

    Article  Google Scholar 

  9. M. Florent, R. Shvartzman-Cohen, D. Goldfarb, R. Yerushalmi-Rozen, Self-assembly of pluronic copolymers in aqueous dispersions of single-wall carbon nanotubes as observed by spin probe EPR. Langmuir 24, 3773–3779 (2008)

    Article  Google Scholar 

  10. R. Shvartzman-Cohen, Y. Levi-Kalisman, E. Nativ-Roth, R. Yerushalmi-Rozen, Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20, 6085–6088 (2004)

    Article  Google Scholar 

  11. R. Shvartzman- Cohen, E. Nativ-Roth, E. Baskaran, Y. Levi-Kalisman, I. Szleifer, R. Yerushalmi-Rozen, Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J. Am. Chem. Soc 126, 14850–14857 (2004)

    Article  Google Scholar 

  12. E. Nativ-Roth, R. Shvartzman- Cohen, C. Bounioux, M. Florent, D. Zhang, I. Szleifer, R. Yerushalmi-Rozen, Physical adsorption of block copolymers to SWNT and MWNT: a nonwrapping mechanism. Macromolecules 40, 3676–3685 (2007)

    ADS  Article  Google Scholar 

  13. D. Vijayaraghavan, Self-assembled ordering of single-walled carbon nanotubes in a lyotropic liquid crystal system. J. Mol. Liq. 199, 128–132 (2014)

    Article  Google Scholar 

  14. D. Vijayaraghavan, Self-assembled superlattices of gold nanoparticles in a discotic liquid crystal. Mol. Cryst. Liq. Cryst. 508, 101–114 (2009)

    Article  Google Scholar 

  15. P. Launois, A. Marucci, B. Vigolo, P. Bernier, A. Derre, P. Poulin, Structural characterization of nanotube fibers by X-ray scattering. J. Nanosci. Nanotech. 1, 125–128 (2001)

    Article  Google Scholar 

  16. D. Vijayaraghavan, Aggregates of single-walled carbon nanotube bundles in a surfactant solution. J. Mol. Liq. 209, 440–446 (2015)

    Article  Google Scholar 

  17. M. Granite, A. Radulescu, W. Pyckhout-Hintzen, Y. Cohen, Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small angle neutron scattering study. Langmuir 27, 751–759 (2011)

  18. J. Ma, C. Guo, Y. Tang, J. Wang, L. Zheng, X. Liang, S. Chen, H. Liu, Microenvironmental and conformational structure of triblock copolymers in aqueous solution by 1H and 13C NMR spectroscopy. J. Colloid Interface Sci. 299, 953–961 (2006)

    ADS  Article  Google Scholar 

  19. G. Wanka, H. Hoffmann, W. Ulbricht, Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 4145–4159 (1994)

    ADS  Article  Google Scholar 

  20. J. Zhu, R.B. Lennox, A. Eisenberg, Polymorphism of (quasi) two-dimensional micelles. J. Phys. Chem. 96, 4727–4730 (1992)

    Article  Google Scholar 

  21. D.J. Meier, In thermoplastic elastomers, Eds (Hanser, Newyork, 1987) Chapter 11

    Google Scholar 

  22. S. Li, S. Hanley, I. Khan, S.K. Varshney, A. Eisenberg, R.B. Lennox, Surface micelle formation at the air/water interface from nonionic diblock copolymers. Langmuir 9, 2243–2246 (1993)

    Article  Google Scholar 

  23. D. Vijayaraghavan, Magnetic susceptibility and electrical conductivity studies on the aqueous solutions of two nonionic surfactants. J. Mol. Liq. 166, 76–80 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K.N. Vasudha for DSC measurements and A. Dhason for SEM images. The authors (ASM and CGP) thank the Raman Research Institute for the VSP fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vijayaraghavan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vijayaraghavan, D., Manjunatha, A.S. & Poojitha, C.G. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions. Braz J Phys 48, 130–136 (2018). https://doi.org/10.1007/s13538-018-0558-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0558-8

Keywords

  • Carbon nanotube
  • Cnt-poymer hybrid
  • SEM
  • 1H NMR
  • Self-assembly
  • Electrical conductivity