Advertisement

Brazilian Journal of Physics

, Volume 48, Issue 2, pp 111–118 | Cite as

A Novel Phase Sensitive Quantum Well Nanostructure Scheme for Controlling Optical Bistability

  • Ali Raheli
Atomic Physics

Abstract

A novel four-level lambda-type quantum well (QW) nanostructure is proposed based on phase sensitive optical bistability (OB) and multistability (OM) with a closed-loop configuration. The influence of controlling parameters of the system on OB and OM is investigated. In particular, it is found that the OB behavior is strongly sensitive to the relative phase of applied fields. It is also shown that under certain parametric conditions, the OB can be switched to OM or vice versa. The controllability of OB/OM in such a QW nanostructure may bring some new possibilities for technological applications in solid-state quantum information science and optoelectronics.

Keywords

Optical bistability Optical multistability Probe absorption 

References

  1. 1.
    L. Yuan, D. Wang, A.A. Svidzinsky, H. Xia, O. Kocharovskaya, A. Sokolov, G.R. Welch, S. Suckewer, M.O. Scully, Transient lasing without inversion via forbidden and virtual transitions. Phys. Rev. A 89(013814) (2014)Google Scholar
  2. 2.
    Z. Wang, B. Yu, High refractive index without absorption in a rare-earth-ion-doped optical fiber. Appl. Phys. A Mater. Sci. Process. 109(725–729) (2012)Google Scholar
  3. 3.
    K.-J. Boller, A. Imamolu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wu, X. Yang, Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71(053806) (2005)Google Scholar
  5. 5.
    Z. Wang, B. Yu, High-precision two-dimensional atom localization via quantum interference in a tripod-type system. Laser Phys. Lett 11, 035201 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    C. Ding, J. Li, Z. Zhan, X. Yang, Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83(063834) (2011)Google Scholar
  7. 7.
    W.-j. Jiang, X.’a. Yan, J.-p. Song, H.-b. Zheng, C. Wu, B.-y. Yin, Y. Zhang, Enhancement of Kerr nonlinearity via spontaneously generated coherence in a four-level N-type atomic system. Opt Commun 282, 101–105 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Niu, S.q. Gong, Enhancing Kerr nonlinearity via spontaneously generated coherence. Phys. Rev. A 73, 053811 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Bacha, F. Ghafoor, I. Ahmad, A. Rahman, Gain assisted multiple surperluminal regions via a Kerr nonlinearity in a double lambda-type atomic configuration. Laser Phys. 24, 055401 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    H.R. Hamedi, S.H. Asadpour, M. Sahrai, Giant Kerr nonlinearity in a four-level atomic medium. Optik 124, 366–370 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    W.-X. Yang, T.-T. Zha, R.-K. Lee, Giant Kerr nonlinearities and slow optical solitons in coupled double quantum-well nanostructure. Phys. Lett. A 374, 355–359 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wu, M.G. Payne, E.W. Hagley, L. Deng, Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference. Opt. Lett. 29, 2294–2296 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Gong, J. Huang, K. Li, N. Copner, J.J. Martinez, L. Wang, T. Duan, W. Zhang, W.H. Loh, Spoof four-wave mixing for all-optical wavelength conversion. Opt. Express 20, 24030–24037 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Wu, X. Yang, Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A 70(053818) (2004)Google Scholar
  15. 15.
    Y. Zhang, B. Anderson, M. Xiao, Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence. Phys. Rev. A 77, 061801 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    W.-X. Yang, J.-M. Hou, Y.Y. Lin, R.-K. Lee, Detuning management of optical solitons in coupled quantum wells. Phys. Rev. A 79, 033825 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C. Hang, G. Huang, Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet. Opt. Express 18, 2952 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wu, L. Deng, Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    W. Harshawardhan, G.S. Agarwal, Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences. Phys. Rev. A 53, 1812 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Wang, B. Yu, Optical bistability and multistability via dual electromagnetically induced transparency windows. J. Lumin. 132, 2452 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, R.-K. Lee, Coherent control of optical bistability in an open Λ-type three-level atomic system. J. Opt. Soc. Am B 29, 2891–2896 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    X.L. Zhang, L. Yu, S. Zhang, L. Li, J.Q. Zhao, J.H. Cui, G.Z. Dong, R. Wang, Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser. Laser Phys. Lett. 10, 125801 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.-H. Li, X.-Y. Lü, J.-M. Luo, Q.-J. Huang, Optical bistability and multistability via atomic coherence in an N-type atomic medium Phys. Rev. A 74, 035801 (2006)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, H. Fan, Phase-dependent optical bistability and multistability in a semiconductor quantum well system. J. Lumin 130, 2084–2088 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Joshi, W. Yang, M. Xiao, Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A 68, 015806 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    D.-c. Cheng, C.-p. Liu, S.-q. Gong, Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system. Phys. Lett. A 332, 244–249 (2004)ADSCrossRefMATHGoogle Scholar
  27. 27.
    X. Hu, H. Zhang, H. Sun, Y. Lei, H. Li, W. Liu, Phase control of optical bistability and multistability in a tripod four-level atomic medium. Appl. Opt. 55, 6263–6268 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Wu, X. Yang, Giant Kerr nonlinearities and solitons in a crystal of molecular magnets. Appl. Phys. Lett. 91, 094104 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Wu, X.X. Yang, Exact eigenstates for a class of models describing two-mode multiphoton processes. Opt. Lett. 28, 1793 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    W.-X. Yang, A.-X. Chen, Y. Bai, R.-K. Lee, Ultrafast single-electron transfer in coupled quantum dots driven by a few-cycle chirped pulse. J. Appl. Phys. 115(143105) (2014)Google Scholar
  31. 31.
    H.Z. Shen, M. Qin, X.-M. Xiu, X.X. Yi, Exact non-Markovian master equation for a driven damped two-level system. Phys. Rev. A 89, 062113 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    D.-Y. Song, Tunneling and energy splitting in an asymmetric double-well potential. Ann. Physics. 323, 2991–2999 (2008)ADSCrossRefMATHGoogle Scholar
  33. 33.
    A. Imamoglu, R.J. Ram, Semiconductor lasers without population inversion. Opt. Lett. 19, 1744 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    J. Li, J. Liu, X. Yang, Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure. Superlattice. Microst. 44, 166–172 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Wang, B. Yu, Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure. J. Appl. Phys. 113, 113101 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J. Li, R. Yu, X. Yang, Double-state controllable optical switching through three tunnel-coupled quantum dots inside waveguide coupled photonic crystal microcavity. Opt. Commun. 284, 1893–1900 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, B. Yu, Controllable optical bistability via tunneling induced transparency in quantum dot molecules. Opt Commun 304, 7–10 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    H.S. Borges, L. Sanz, J.M. Villas-Bôas, O.O. Diniz Neto, A.M. Alcalde, Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B 85, 115425 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Li, J. Liu, X. Yang, Superluminal optical soliton via resonant tunneling in coupled quantum dots. Phys. E. 40, 2916–2920 (2008)CrossRefGoogle Scholar
  40. 40.
    H.S. Borges, L. Sanz, J.M. Villas-Bôas, A.M. Alcalde, Robust states in semiconductor quantum dot molecules. Phys. Rev. B 81, 075322 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A 68, 053802 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    H.R. Hamedi, Mohammad Reza Mehmannavaz, switching feature of EIT-based slow light giant phase-sensitive Kerr nonlinearity in a semiconductor quantum well. Phys. E. 66, 309–316 (2015)CrossRefGoogle Scholar
  43. 43.
    T. Shui, Z. Wang, B. Yu, Controlling two-dimensional electron localization via phase-controlled absorption and gain in the three-coupled quantum wells. Phys. Lett. A 378, 235–242 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Wang, B. Yu, F. Xu, S. Zhen, X. Wu, J. Zhu, Z. Cao, Inhibition and enhancement of two-photon absorption in a four-level inverted-Y semiconductor quantum well system. Phys. E. 44, 1267–1271 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Joshi, Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system. Phys. Rev. B 79, 115315 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    L. A. Lugiato, in: E. Wolf (Ed.), Progress in optics, 211, North-Holland, Amsterdam, p. 71 (1984)Google Scholar
  47. 47.
    A.T. Rosenberger, L.A. Orozco, H.J. Kimble, Ionization of heavy atoms by polarized relativistic protons. Phys. Rev. A 28, 2529 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Department of Physics, Bonab BranchIslamic Azad UniversityBonabIran

Personalised recommendations