Brazilian Journal of Physics

, Volume 48, Issue 2, pp 126–129 | Cite as

Mott Transition in GdMnO3: an Ab Initio Study

  • W. S. Ferreira
  • E. Moreira
  • N. F. Frazão
Condensed Matter


Orthorhombic GdMnO3 is studied using density functional theory considering the pseudo-potential plane-wave method within local-spin-density approximation, LSDA. The electronic band structure and density of states, for several hydrostatic pressures, are studied. The Mott transition was observed at 60 GPa. Calculated lattice parameters are close to the experimental measurements, and some indirect band gaps (S→Γ) were obtained within the LSDA level of calculation, between the occupied O-2p and unoccupied Gd-4f states. The variation of the gap reduces with increasing pressure, being well fitted to a quadratic function.


Ab initio Magnetoelectric Manganites 


Funding information

This work was supported by the Brazilian Research Agencies CAPES (Project No. 1099-11-3) and FAPEMA (Project No. 287/14, 2584/14, 3022/14, 798/16) during the development of the work.


  1. 1.
    C. Lin, Y. Zhang, J. Liu, X. Li, Y. Li, L. Tang, L. Xiong, J. Phys. Condens. Matter 24, 115402 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    J. Oliveira, J. Agostinho Moreira, V.H. Rodrigues, M.M.R. Costa, P.B. Tavares, P. Bouvier, M. Guennou, J. Kreiseol, Phys. Rev. B 85, 052101 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  7. 7.
    O.V. Gritsenko, P.R. Schipper, E.J. Baerends, J. Chem. Phys. 107, 5007 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Cerpeley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    B.J. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    F. Birch, Phys. Rev. 71, 809 (1947)ADSCrossRefGoogle Scholar
  13. 13.
    E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, J. Solid State Chem. 184, 921 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, J. Appl. Phys. 112, 043703 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, J. Solid State Chem. 187, 186 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Silva, B.P. Silva, F.A.M. Sales, V.N. Freire, E. Moreira, U.L. Fulco, E.L. Albuquerque, F.F. Maia Jr, E.W.S. Caetano, Phys. Rev. B 86, 195201 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Bouhemadou, F. Djabi, R. Khenata, Phys. Lett. A 372, 4527 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    U. Schönberger, F. Aryasetiawan, Phys. Rev. B 52, 8788 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 37, 10159 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Z.H. Levine, D.C. Allan, Phys. Rev. B 43, 4187 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    S.Q. Wang, H.Q. Ye, J. Phys. Condens. Matter 15, L197 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    L.-G. Cai, F.–.M. Liu, D. Zhang, W.–.W. Zhong, Solid State Commun. 152, 1036 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.GRUMA—Grupo de Magnetoeletricidade, Departamento de FísicaUniversidade Estadual do MaranhãoSão LuísBrazil
  2. 2.Centro de Educação e SaúdeUniversidade Federal de Campina GrandeCuitéBrazil

Personalised recommendations