Brazilian Journal of Physics

, Volume 47, Issue 6, pp 672–677 | Cite as

Two-Dimensional Wetting Transition Modeling with the Potts Model

  • Daisiane M. Lopes
  • José C. M. Mombach


A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance (G) and the pillar height (H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.


Wetting transition Cassie-Baxter state Wenzel state Potts model 



This work was partially supported by Conselho de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES).


  1. 1.
    Q. Xu, W. Zhang, C. Dong, T.S. Sreeprasad, Z. Xia, Biomimetic self-cleaning surfaces: synthesis, mechanism and applications. J. R. Soc. Interface. 13(122), 20160300 (2016)CrossRefGoogle Scholar
  2. 2.
    M.G. Krishna, M. Vinjanampati, D.D. Purkayastha, Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects. Eur. Phys. J. Appl. Phys. 62(3), 30001 (2013)CrossRefGoogle Scholar
  3. 3.
    N.J. Shirtcliffe, G. McHale, S. Atherton, M.I. Newton, An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161(1), 124–138 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79(6), 667–677 (1997)CrossRefGoogle Scholar
  5. 5.
    P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exp. Bot. 54(385), 1295–1303 (2003)CrossRefGoogle Scholar
  6. 6.
    R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)CrossRefGoogle Scholar
  7. 7.
    A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)CrossRefGoogle Scholar
  8. 8.
    Q. Zheng, L. Cunjing, Size effects of surface roughness to superhydrophobicity. Procedia IUTAM. 10, 462–475 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Young, An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  10. 10.
    T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki, X.C. Zeng, Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci. 106(21), 8435–8440 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    L. Wang, J. Wei, Z. Su, Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer. Langmuir. 27(24), 15299–15304 (2011)CrossRefGoogle Scholar
  12. 12.
    L.R. de Oliveira, D.M. Lopes, S.M. Ramos, J.C. Mombach, Two-dimensional modeling of the superhydrophobic behavior of a liquid droplet sliding down a ramp of pillars. Soft Matter. 7(8), 3763–3765 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G. McHale, N.J. Shirtcliffe, M.I. Newton, Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir. 20(23), 10146–10149 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Ran, G. Ding, W. Liu, Y. Deng, W. Hou, Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir. 24(18), 9952–9955 (2008)CrossRefGoogle Scholar
  15. 15.
    D.M. Lopes, S.M. Ramos, L.R. de Oliveira, J.C. Mombach, Cassie-Baxter to Wenzel state wetting transition: a 2D numerical simulation. RSC Advances. 3(46), 24530–24534 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Barbieri, E. Wagner, P. Hoffmann, Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Langmuir. 23(4), 1723–1734 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Shahraz, A. Borhan, K.A. Fichthorn, A theory for the morphological dependence of wetting on a physically patterned solid surface. Langmuir. 28(40), 14227–14237 (2012)CrossRefGoogle Scholar
  18. 18.
    H.C. Fernandes, M.H. Vainstein, C. Brito, Modeling of droplet evaporation on superhydrophobic surfaces. Langmuir. 31(27), 7652–7659 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2(7), 457–460 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    B. He, N.A. Patankar, J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir. 19(12), 4999–5003 (2003)CrossRefGoogle Scholar
  21. 21.
    C. Pirat, M. Sbragaglia, A.M. Peters, B.M. Borkent, R.G.H. Lammertink, M. Wessling, D. Lohse, Multiple time scale dynamics in the breakdown of superhydrophobicity. Europhys. Lett. 81(6), 66002 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    B. D’urso, J.T. Simpson, M. Kalyanaraman, Emergence of superhydrophobic behavior on vertically aligned nanocone arrays. Appl. Phys. Lett. 90(4), 044102 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    N.T. Chamakos, M.E. Kavousanakis, A.G. Papathanasiou, Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces. Soft Matter. 9(40), 9624–9632 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    B. Wang, Y. Zhang, L. Shi, J. Li, Z. Guo, Advances in the theory of superhydrophobic surfaces. J. Mater. Chem. 22(38), 20112–20127 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, Super water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100(50), 19512–19517 (1996)CrossRefGoogle Scholar
  26. 26.
    J.C. Tuberquia, W.S. Song, G.K. Jennings, Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods. Anal. Chem. 83(16), 6184–6190 (2011)CrossRefGoogle Scholar
  27. 27.
    Q. Guo, Y. Liu, G. Jiang, X. Zhang, Condensation of droplets on nanopillared hydrophobic substrates. Soft Matter. 10(8), 1182–1188 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    E. Bormashenko, R. Pogreb, G. Whyman, Y. Bormashenko, M. Erlich, Vibration-induced Cassie-Wenzel wetting transition on rough surfaces. Appl. Phys. Lett. 90(20), 201917 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich, Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir. 23(12), 6501–6503 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys.: Condens. Matter. 20(39), 395005 (2008)Google Scholar
  31. 31.
    J.S. Lee, Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces. J. Mech. Sci. Technol. 30(8), 3741–3747 (2016)CrossRefGoogle Scholar
  32. 32.
    M.E. Kavousanakis, C.E. Colosqui, A.G. Papathanasiou, Engineering the geometry of stripe-patterned surfaces toward efficient wettability switching. Colloids Surf. A Physicochem. Eng. Asp. 436, 309–317 (2013)CrossRefGoogle Scholar
  33. 33.
    T.M. Cai, Z.H. Jia, H.N. Yang, G. Wang, Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces. Colloid. Polym. Sci. 294(5), 833–840 (2016)CrossRefGoogle Scholar
  34. 34.
    G. Wang, Z.H. Jia, H.N. Yang, Stability of a water droplet on micropillared hydrophobic surfaces. Colloid. Polym. Sci. 294(5), 851–858 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Shahraz, A. Borhan, K.A. Fichthorn, Wetting on physically patterned solid surfaces: the relevance of molecular dynamics simulations to macroscopic systems. Langmuir. 29(37), 11632–11639 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Shahraz, A. Borhan, K.A. Fichthorn, Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling. Langmuir. 30(51), 15442–15450 (2014)CrossRefGoogle Scholar
  37. 37.
    F. Graner, J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E. 47(3), 2128 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Mombach, R.M.C. De Almeida, G.L. Thomas, A. Upadhyaya, J.A. Glazier, Bursts and cavity formation in hydra cells aggregates: experiments and simulations. Physica A: Statistical Mechanics and its Applications. 297(3), 495–508 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    G.L. Thomas, V. Mironov, A. Nagy-Mehez, J.C. Mombach, Dynamics of cell aggregates fusion: experiments and simulations. Physica A: Statistical Mechanics and its Applications. 395, 247–254 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    V. Mortazavi, R.M. D’Souza, M. Nosonovsky, Study of contact angle hysteresis using the cellular Potts model. Phys. Chem. Chem. Phys. 15(8), 2749–2756 (2013)CrossRefGoogle Scholar
  42. 42.
    M.A. Idiart, Y. Levin, Rupture of a liposomal vesicle. Phys. Rev. E. 69(6), 061922 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2014)CrossRefMATHGoogle Scholar
  44. 44.
    J. Bico, C. Marzolin, D. Quéré, Pearl drops. Europhys. Lett. 47(2), 220 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations