Advertisement

Brazilian Journal of Physics

, Volume 47, Issue 6, pp 628–639 | Cite as

A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach

  • Asloob A. Rather
  • M. Ikram
  • A. A. Usmani
  • B. Kumar
  • S. K. Patra
Nuclear Physics
  • 78 Downloads

Abstract

This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O208 P b) by injecting Λ’s into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of ΛN and ΛΛ interaction in addition to nucleon-meson NL 3 effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy (S Λ,S ) and two lambda shell gaps (δ ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ’s in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S , and δ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective pairing gap and pairing energy. Also, the lambda single-particle spectrum is analyzed to mark the energy shell gap for further strengthening the predictions made on the basis of separation energies and shell gaps. Lambda and nucleon spin-orbit interactions are analyzed to confirm the reduction in magnitude of Λ spin-orbit interaction compared to the nucleonic case, however the interaction profile is similar in both the cases. Lambda and nucleon density distributions have been investigated to reveal the impurity effect of Λ hyperons which make the depression of central density of the core of superheavy doubly magic nuclei. Lambda skin structure is also seen.

Keywords

Hypernuclei Magic number Separation energy Spin-orbit interaction Relativistic mean field theory 

Notes

Acknowledgements

One of the authors (MI) would like to acknowledge the hospitality provided by Institute of Physics (IOP), Bhubaneswar where the parts of this work was carried out.

References

  1. 1.
    M. M. Nagels, T. A. Rijken, J. J. de Swart, Phys. Rev. D. 15, 2547 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    M. M. Nagels, T. A. Rijken, J. J. de Swart, Phys. Rev. D. 20, 1633 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    P. M. M. Maessen, T. A. Rijken, J. J. de Swart, Phys. Rev. C. 40, 2226 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    T. A. Rijken, V. J. G. Stoks, Y. Yamamoto, Phys. Rev. C. 59, 21 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    T. A. Rijken, Y. Yamamoto, Phys. Rev. C. 73, 044008 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    M. M. Nagels, T. A. Rijken, Y Yamamoto, arXiv:1501.06636 (2015)
  7. 7.
    M. M. Nagels, T. A. Rijken, Y Yamamoto, arXiv:1504.02634 (2015)
  8. 8.
    B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A. 500, 485 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A. 570, 543 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J. Haidenbauer, U.-G. Meißner, Phys. Rev. C. 72, 044005 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    H. Polinder, J. Haidenbauer, U.-G. Meißner, Nucl. Phys. A. 779, 244 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A. 915, 24 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    J. Haidenbauer, Nucl. Phys. A. 914, 220 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kohno, Y. Fujiwara, Phys. Rev. C. 79, 054318 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Mayer, Phys. Rev. 75, 1969 (1949)ADSCrossRefGoogle Scholar
  17. 17.
    O. Haxel, H. H. D. Jensen, H. E. Suess, Phys. Rev. 75, 1766 (1949)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bohr, B. Mottelson. Nuclear Structure (Benjamin, New York, 1969)MATHGoogle Scholar
  19. 19.
    P. Ring, P Schuck. The Nuclear Many-Body Problem (Springer, Berlin, 1980)CrossRefGoogle Scholar
  20. 20.
    K Heyde. Basic Ideas and Concepts in Nuclear Physics (Institute of Physics Publishing, Bristol, 1999)MATHGoogle Scholar
  21. 21.
    J. D. Walecka, Ann. Phys., NY. 83, 491 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    B. D. Serot, J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)Google Scholar
  23. 23.
    P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    D. Hirata, H. Toki, T. Watabe, I. Tanihata, B. V. Carlson, Phys. Rev. C. 44, 1467 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    M. Brack, C. Guet, B. Hakansson, Phys. Rep. 123, 275 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sobiczewski, Fiz. Elem. Chastits At. Yadra. 295, 25 (1994)Google Scholar
  28. 28.
    P. Möller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables. 59, 185 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    P. Möller, J. R. Nix, K. Kratz, At. Data Nucl. Tables. 66, 131 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    V. Y. Denisov, Phys. At. Nucl. 68, 1133 (2005)CrossRefGoogle Scholar
  31. 31.
    J. F. Berger, L. Bitaud, M. Girod, K. Dietrich, Nucl. Phys. A. 685, 644 (2001)CrossRefGoogle Scholar
  32. 32.
    M. Bender, W. Nazarewicz, P.-G. Reinhard, Phys. Lett. B. 515, 42 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, W. Greiner, Phys. Rev. C. 60, 034304 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    T. Bürvenich, K. Rutz, M. Bender, P. G. Reinhard, J. A. Maruhn, W. Greiner, Eur. Phys. J. A. 3, 139 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    A. T. Kruppa, M. Bender, W. Nazarewicz, P.G. Reinhard, T. Vertse, S. C̈wiok, Phys. Rev. C. 61, 034313 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    S. Liran, A. Marinov, N. Zeldes, Phys. Rev. C. 62, 047301 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    S. Liran, A. Marinov, N. Zeldes, Phys. Rev. C. 66, 024303 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    G. Lalazissis, M. Sharma, P. Ring, Y. Gambhir, Nucl. Phys. A. 608, 202 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    S. Ćwiok, J. F. Dobaczewski, P. Magierski, W. Heenen, Nazarewicz P. H., Nucl. Phys. A. 611, 211 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P. G. Reinhard, J. A. Maruhn, W. Greiner, Rev. C. 56, 238 (1997)Google Scholar
  41. 41.
    T. Bürvenich, K. Rutz, M. Bender, et al., Eur. Phys. J. A. 3, 139 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    A. T. Kruppa, M. Bender, W. Nazarewicz, et al., Phys. Rev. C. 61, 034313 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    T. Sil, S. K. Patra, B. K. Sharma, M. Centelles, X. Vinas, Phys. Rev. C. 69, 044315 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    M. Bhuyan, S. K. Patra, Mod. Phys. Lett. A. 27, 1250173 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, H. Toki, Nucl. Phys. A. 753, 106 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    H. Nakada, K. Sugiura, Prog. Theor. Exp. Phys. 2, 033D02 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Nakada, Phys. Rev. C. 87, 014336 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    J. F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    S. Goriely, S. Hilaire, M. Girod, S. Përu, Phys. Rev. Lett. 102, 242501 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    M. Ismail, A. Y. Ellithi, A. Adel, H. Anwer, J. Phys. G: Nucl. Part. Phys. 43, 015101 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ikram, A.A. Rather, S. K. Biswal, B. Kumar, S. K. Patra, Int. J. Mod. Phys. E. 25, 1650103 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Sugahara, H. Toki, Prog. Theor. Phys. 92, 803 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    D. Vretenar, W. Pos̈chl, G. A. Lalazissis, P. Ring, Phys. Rev. C. 57, R1060 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    H. -F. Lü, J. Meng, S. Q. Zhang, S. G. Zhou, Eur. Phys. J. A. 17, 19 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    M. T. Win, K. Hagino, Phys. Rev. C. 78, 054311 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M. Ikram, S. K. Singh, A. A. Usmani, S. K. Patra, Int. J. Mod. Phys. E. 23, 1450052 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    N. K. Glendenning, D. Von-Eiff, M. Haft, H. Lenske, M. K. Weigel, Phys. Rev. C. 48, 889 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    J. Mares, B. K. Jennings, Phys. Rev. C. 49, 2472 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    M. Rufa, J. Schaffner, J. Maruhn, H. Stöcker, W. Greiner, Phys. Rev. C. 42, 2469 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    J. Schaffner, M. Hanauske, H. Stöcker, W. Greiner, Phys. Rev. Lett. 89, 171101 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    H. Shen, F. Yang, H. Toki, Prog. Theor. Phys. 115, 325 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    J. Schaffner, C. B. Dover, A. Gal, C. Greiner, D. J. Millener, H. Stöcker, Ann. Phys. (N.Y.) 235, 35 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    J. Schaffner, C. B. Dover, A. Gal, C. Greiner, H. Stöcker, Phys. Rev. Lett. 71, 1328 (1993)ADSCrossRefGoogle Scholar
  64. 64.
    G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A. V. Afanasjev, P. Ring, Phys. Lett. B. 671, 36 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    C. B. Dover, A. Gal, Prog. Part. Nucl. Phys. 12, 171 (1984)ADSCrossRefGoogle Scholar
  66. 66.
    M. Chiapparini, M. E. Bracco, A. Delfino, M. Malheiro, D. P. Menezes, C. Providencia, Nucl. Phys. A. 826, 178 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    N. K. Glendenning, S. A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    S. K. Biswal, B. Kumar, S. K. Patra, Int. J. Mod. Phys. E. 25, 1650090 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, J. W. T. Hessels, Nature (London). 467, 1081 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    J. Antoniadis, et al., Science. 340, 6131 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    M. Dutra, Phys. Rev. C. 90, 055203 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    G. A. Lalazissis, et al., Phys. Lett B. 671, 36 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    A. Bohr, B. R. Mottelson, D. Pines, Phys. Rev. C. 110, 936 (1958)ADSCrossRefGoogle Scholar
  74. 74.
    P.G. Reinhard, E. W. Otten, Nucl. Phys. A. 420, 173 (1984)ADSCrossRefGoogle Scholar
  75. 75.
    M. Bender, P. H. Heenen, P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    J. Blocki, M. Flocard, Nucl. Phys. A. 273, 45 (1976)ADSCrossRefGoogle Scholar
  77. 77.
    W. Brückner, et al., Phys. Lett. B. 79, 157 (1978)ADSCrossRefGoogle Scholar
  78. 78.
    M. May, Phys. Rev. Lett. 47, 1106 (1981)ADSCrossRefGoogle Scholar
  79. 79.
    M. May, et al., Phys. Rev. Lett. 51, 2085 (1983)ADSCrossRefGoogle Scholar
  80. 80.
    S. Ajimura, et al., Phys. Rev. Lett. 86, 4255 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  • Asloob A. Rather
    • 1
  • M. Ikram
    • 1
  • A. A. Usmani
    • 1
  • B. Kumar
    • 2
    • 3
  • S. K. Patra
    • 2
    • 3
  1. 1.Department of PhysicsAligarh Muslim UniversityAligarhIndia
  2. 2.Institute of PhysicsBhubaneswarIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations