Skip to main content
Log in

Ferroquadrupolar Order in the Spin-1 Bilinear-Biquadratic Model up to the Second Nearest Neighbor

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We have studied some ferroquadrupolar phases of the S = 1 Heisenberg model with bilinear and biquadratic exchange interactions on the square lattice up to the second nearest neighbor, using the SU(3) Schwinger bosons formalism in a mean field approximation. This technique is very convenient to treat nematic order. This technique has the advantage of using the fundamental representation of the SU(N) group instead of SU(2), designed to capture spin-quadrupolar order in addition to the dipolar magnetic order. We also present quadrupole structure factors that can be measured in future experiments. Our calculations can have implications in the study of iron-based superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Wang, W.J. Hu, A.H. Nevidomskyy, Phys. Rev. Lett. 116, 247203 (2016)

    Article  ADS  Google Scholar 

  2. F. Wang, S.A. Kivelson, D.H. Lee, Nat. Phys. 11, 959 (2015)

    Article  Google Scholar 

  3. R. Yu, Q. Si, Phys. Rev. Lett. 115, 116401 (2015)

    Article  ADS  Google Scholar 

  4. C. Fang, H. Yao, W.F. Tsai, J.P. Hu, S.A. Kivelson, Phys. Rev. B77, 224509 (2008)

    Article  ADS  Google Scholar 

  5. A.L. Wysocki, K.D. Belashchenko, V.P. Antropov, Nat. Phys. 7, 485 (2011)

    Article  Google Scholar 

  6. R. Yu, Z. Wang, P. Goswami, A.H. Nevidomskyy, Q. Si, E. Abrahams, Phys. Rev. B86, 085148 (2012)

    Article  ADS  Google Scholar 

  7. C. Luo, T. Datta, D.X. Yao, Phys. Rev. B93, 235148 (2016)

    Article  ADS  Google Scholar 

  8. C. Lacroix, P. Mendels, and F. Mila.( Eds.) Introduction to Frustrated Magnetism (Springer, Berlin, 2011).

  9. H.-H. Lai, W.-J. Hu, R. Yu, Q. Si, Phys. Rev. Lett. 118 (2017) 176401.

  10. Q. Wang, Y. Shen, B. Pan, X. Zhang, K. Ikeuchi, K. Iida, A.D. Christianson, H.C. Walker, D.T. Adroja, M. Abdel-Hafiez, X. Chen, D.A. Charev, A.N. Vasiliev, J. Zhao, Nat. Commun. 7, 12182 (2016)

    Article  ADS  Google Scholar 

  11. K. Penc, A.M. Lauchli, in Introduction to Frustrated Magnetism, ed. by C. Lacroix, P. Mendels, F. Mila (Springer, Berlin, 2011) pp.331–362.

  12. N. Papanicolaou, Nucl. Phys. B 305, 367 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.T. Wang, Y. Wang, Phys. Rev. B71, 104429 (2005)

    Article  ADS  Google Scholar 

  14. A.S.T. Pires, M.E. Gouvea, Eur. Phys. J. B44, 169 (2005)

    Article  ADS  Google Scholar 

  15. A.S.T. Pires, L.S. Lima, M.E. Gouvea, J. Phys. Condens. Matter 20, 015208 (2008)

    Article  ADS  Google Scholar 

  16. A.S.T. Pires, M.E. Gouvea, Physica A 388, 21 (2009)

    Article  ADS  Google Scholar 

  17. A.S.T. Pires, Physica A 373, 387 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.S.T. Pires, B.V. Costa, Physica A x388, 3779 (2009)

  19. L.S. Lima, A.S.T. Pires, Solid State Commun. 149, 269 (2009)

    Article  ADS  Google Scholar 

  20. A.S.T. Pires, Physica A390, 2787 (2011)

    Article  ADS  Google Scholar 

  21. A.S.T. Pires, Solid State Commun. 152, 1838 (2012)

    Article  ADS  Google Scholar 

  22. T.A. Toth, A.M. Lauchli, F. Mila, K. Penc, Phys. Rev. Lett. 105, 265301 (2010)

    Article  ADS  Google Scholar 

  23. A. Smerald, N. Shannon, Phys. Rev. B88, 184430 (2013)

    Article  ADS  Google Scholar 

  24. Y. Kuramoto, H. Kusunose, A. Kiss, J. Phys. Soc. Jpn. 78, 072001 (2009)

    Article  ADS  Google Scholar 

  25. L.J.P. Ament, M. van Veenendaal, T.P. Devereaux, J.P. Hill, J. van den Brink, Rev. Mod. Phys. 83, 705 (2011)

    Article  ADS  Google Scholar 

  26. Z. Zhang, K. Wierschen, I. Yap, Y. Kato, C.D. Batista, P. Sengupta, Phys. Rev. B87, 174405 (2013)

    Article  ADS  Google Scholar 

  27. S.S. Gong, W. Zhu, D.N. Sheng, K. Yang, Phys. Rev. B 95 (2017) 205132.

Download references

Acknowledgments

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. T. Pires.

Appendix A

Appendix A

Let us start with the calculation of the spin-spin correlation function. Using <t z  > = t in Eq. (9) and Fourier transforming, we have

$$ \begin{array}{cc}\hfill {S}_q^{+}=\sqrt{2} t\left({d}_d+{u}_{- q}^{+}\right),\hfill & \hfill {S}_q^{-}=\sqrt{2} t\left({d}_q^{+}+{u}_{- q}\right)\hfill \end{array} $$
(A1)

Then we can write

$$ <{S}_q^{+}{S}_{- q}^{-}>=2{t}^2\left(<{d}_q{d}_d^{+}>+<{d}_q{u}_{- q}>+<{u}_{- q}^{+}{d}_q^{+}>+<{u}_{- q}^{+}{u}_{- q}>\right) $$
(A2)

Taking Eq. (14) into Eq. (A2), we obtain

$$ <{S}_q^{+}{S}_{- q}^{-}>=2{t}^2\left(<{\beta}_q{\beta}_q^{+}>+<{\alpha}_q^{+}{\alpha}_q>\right)\left({\chi}_q^2-2{\chi}_q{\rho}_q+{\rho}_q^2\right) $$
(A3)

Using the well know expression

$$ <{\alpha}_q^{+}{\alpha}_q>=<{\beta}_q^{+}{\beta}_q>={n}_q, $$
(A4)

leads to

$$ <{S}_q^{+}{S}_{- q}^{-}>=2{t}^2\left(1+2{n}_q\right)\left({\chi}_q^2-2{\chi}_q{\rho}_q+{\rho}_q^2\right). $$
(A5)

Finally, inserting Eq. (15) into Eq. (A5), we get Eq. (27).

Now, we turn to the calculation of the zz quadrupole structure factor. Equations (30) and (9) leads to

$$ \begin{array}{l}<{\left({S}_q^z\right)}^2{\left({S}_{- q}^z\right)}^2>=\sum_{k,{k}_1}\left(<{u}_{q- k}^{+}{u}_k{u}_{- q-{k}_1}^{+}{u}_{k_1}>+<{d}_{q- k}^{+}{d}_k{d}_{- q-{k}_1}^{+}{d}_{k_1}>\right.+\hfill \\ {}\left.<{u}_{q- k}^{+}{u}_k{d}_{- q-{k}_1}^{+}{d}_{k_1}>+<{d}_{q- k}^{+}{d}_k{u}_{- q-{k}_1}^{+}{u}_{k_1}>\right).\hfill \end{array} $$
(A6)

Let us consider the first term as an example. Using Eq. (14), we find

$$ <\left({\chi}_{q- k}{\alpha}_{q- k}^{+}-{\rho}_{q- k}{\beta}_{q- k}\right)\left({\chi}_k{\alpha}_k-{\rho}_k{\beta}_k^{+}\right)\left({\chi}_{q-{k}_1}{\alpha}_{q-{k}_1}^{+}-{\rho}_{q-{k}_1}{\beta}_{q-{k}_1}\right)\left({\chi}_{k_1}{\alpha}_{k_1}-{\rho}_{k_1}{\beta}_{k_1}^{+}\right)>. $$
(A7)

Using the standard procedure to decouple the four operators terms

$$ ABCD=< AB> CD+< AC> BD+< AD> BC+< BC> AD+< BD> AC+< CD> AB, $$
(A8)

and taking into account that the only non null averages are <α + α >  ,  < αα + > , <β + β > , and <ββ +>, we get

$$ \begin{array}{l}\sum_k\left({\chi}_k^2\right.{\chi}_{q- k}^2<{\alpha}_{q- k}^{+}{\alpha}_{q- k}><{\alpha}_k{\alpha}_k^{+}>+{\chi}_{q- k}^2{\rho}_k^2<{\alpha}_{q- k}^{+}{\alpha}_{q- k}><{\beta}_k^{+}{\beta}_k>+\hfill \\ {}\left.{\chi}_k^2{\rho}_{q- k}^2<{\alpha}_k{\alpha}_k^{+}><{\beta}_{q- k}{\beta}_{q- k}^{+}>+{\rho}_k^2{\rho}_{q- k}^2<{\beta}_{q- k}{\beta}_{q- k}^{+}><{\beta}_k^{+}{\beta}_k>\right).\hfill \end{array} $$
(A9)

That can be written as

$$ \begin{array}{l}\sum_k\left[{\chi}_k^2\right.{\chi}_{q- k}^2{n}_{q- k}\left(1+{n}_k\right)+{\chi}_{q- k}^2{\rho}_k^2{n}_{q- k}{n}_k+\hfill \\ {}\left.{\chi}_k^2{\rho}_{q- k}^2\left(1+{n}_k\right)\left(1+{n}_{q- k}\right)+{\rho}_k^2{\rho}_{q- k}^2\left(1+{n}_{q- k}\right){n}_k\right].\hfill \end{array} $$
(A10)

On the other side, the fourth term leads to

$$ \begin{array}{l}\sum_k\left\{{\chi}_k{\chi}_{q- k}\right.{\rho}_k{\rho}_{q- k}{n}_{- q+ k}\left(1+{n}_k\right)+{\chi}_{q- k}{\chi}_k{\rho}_k{\rho}_{q- k}\left[{n}_{- q+ k}{n}_k+\left(1+{n}_{- q+ k}\right)\left(1+{n}_k\right)+\right.\\ {}\left.\left.\left(1+{n}_{- q+ k}\right){n}_k\right]\right\}.\end{array} $$
(A11)

Putting all the terms together, we find at T = 0:

$$ <{\left({S}_q^z\right)}^2{\left({S}_{- q}^z\right)}^2>=\sum_k2\left({\chi}_k^2{\rho}_{q- k}^2+{\chi}_k{\rho}_k{\chi}_{q- k}{\rho}_{q- k}\right). $$
(A12)

Eq. (15) gives

$$ {\chi}_k^2{\rho}_{q- k}^2=\frac{\left({\omega}_k+{\Lambda}_k\right)\left({\Lambda}_{q- k}-{\omega}_{q- k}\right)}{4{\omega}_k{\omega}_{q- k}} $$
(A13)

and

$$ {\chi}_k{\rho}_k{\chi}_{q- k}{\rho}_{q- k}=\frac{\sqrt{\left({\Lambda}_k^2-{\omega}_k^2\right)\left({\Lambda}_{q- k}^2-{\omega}_{q- k}^2\right)}}{4{\omega}_k{\omega}_{q- k}} $$
(A14)

Inserting (A13) and (A14) into (A12) and using \( {\Lambda}_k^2-{\omega}_k^2={\Delta}_k^2 \), we get Eq. (30).

Finally, we calculate the xy component of the quadrupole structure factor. We start with

$$ {Q}_n^{x y}={S}_n^x{S}_n^y+{S}_n^y{S}_n^x=-2 i\left({S}_n^{+}{S}_n^{+}-{S}_n^{-}{S}_n^{-}\right) $$
(A15)

Using Eq. (9) and taking the Fourier transform, we obtain

$$ \begin{array}{l}{Q}_q^{xy}=-4{it}^2\sum_k\left({d}_k{d}_{q- k}+{d}_k{u}_{- q+ k}^{+}+{u}_k^{+}{d}_{q+ k}+{u}_k^{+}{u}_{- q- k}^{+}\right.\hfill \\ {}\left.-{d}_k^{+}{d}_{- q- k}^{+}-{d}_k^{+}{u}_{q+ k}-{u}_k{d}_{- q+ k}^{+}-{u}_k{u}_{q- k}\right)\hfill \end{array} $$
(A16)

We follow the same procedure as we did for the zz component. The calculation is lengthy, but straightforward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, A.S.T. Ferroquadrupolar Order in the Spin-1 Bilinear-Biquadratic Model up to the Second Nearest Neighbor. Braz J Phys 47, 481–487 (2017). https://doi.org/10.1007/s13538-017-0516-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0516-x

Keywords

Navigation