Brazilian Journal of Physics

, Volume 47, Issue 3, pp 339–349 | Cite as

Generalized Kraus Operators for the One-Qubit Depolarizing Quantum Channel

  • M. Arsenijević
  • J. Jeknić-Dugić
  • M. Dugić
General and Applied Physics


Microscopic Hamiltonian models of the composite system “open system + environment” typically do not provide the operator-sum Kraus form of the open system’s dynamical map. With the use of a recently developed method (Andersson et al. J. Mod. Opt. 54, 1695 2007), we derive the Kraus operators starting from the microscopic Hamiltonian model, i.e., from the proper master equation, of the one-qubit depolarizing channel. Those Kraus operators generalize the standard counterparts, which are widely used in the literature. Comparison of the standard and the here obtained Kraus operators is performed via investigating dynamical change of the Bloch sphere volume, entropy production, and the open system’s state trace distance. We compare the generalized with the standard Kraus operators for both single qubit and regarding the occurrence of the entanglement sudden death for a pair of initially correlated qubits. We find that the generalized Kraus operators describe the less deteriorating quantum channel than the standard ones.


Open quantum systems Kraus operator-sum decomposition Qubit operations 



The work on this paper is financially supported by the Ministry of Science Serbia under contract no 171028 and in part for MD by the ICTPSEENET-MTP grant PRJ-09 “Strings and Cosmology” in frame of the SEENET-MTP Network.


  1. 1.
    K. Kraus, States, effects and operations, fundamental notions of quantum theory, Springer (1983)Google Scholar
  2. 2.
    H. P. Breuer, F. Petruccione. The theory of open quantum systems (Clarendon, Oxford, 2002)zbMATHGoogle Scholar
  3. 3.
    A. Rivas, S. F. Huelga, Open quantum systems—an introduction (Springer Briefs in Physics) (2012)Google Scholar
  4. 4.
    M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)zbMATHGoogle Scholar
  5. 5.
    J. Jeknić-Dugić, M. Arsenijević, M. Dugić, Proc. R. Soc. A. 472, 20160041 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S. Chaturvedi, J. Shibata, Z. Physik B. 35, 297 (1979)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Shibata, Y. Takahashi, N. Hashitsume, Stat. Phys. 17, 171 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    M. -D. Choi, Lin. Alg. Appl.. 10, 285 (1975)CrossRefGoogle Scholar
  9. 9.
    K. M. Fonseca Romero, R. Lo Franco, Phys. Scr. 86, 065004 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G. Benenti, G. Casati, G. Strini. Principles of Quantum Computation and Information, Volume II: Basic tools and special topics (World Scientific, Singapore, 2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Q. G. Chen, D. A. Church, B. -G. Englert, C. Henkel, B. Rohwedder, M.O. Scully, M.S. Zubairy, Quantum Computing Devices: Principles, Designs and Analysis. Chapman and Hall (2006)Google Scholar
  12. 12.
    B. Bylicka, D. Chruściński, S. Maniscalco, Sci. Rep. 4, 5720 (2014)CrossRefGoogle Scholar
  13. 13.
    D. C. Marinescu, G. M. Marinescu. Classical and quantum information (Elsevier, Amsterdam, 2012)zbMATHGoogle Scholar
  14. 14.
    A. B. Klimov, L. L. Sanchez-Soto, Phys. Scr. T140, 014009 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    K. Durstberger, Geometry of Entanglement and Decoherence in Quantum Systems, (PhD thesis, Wien) (2005)Google Scholar
  16. 16.
    M. Arsenijević, N. Banković, Kragujevac J. Sci. 38, 41 (2016)CrossRefGoogle Scholar
  17. 17.
    E. Andersson, J. D. Cresser, M. J. W. Hall, J. Mod. Opt. 54, 1695 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Raussendorf, Philos. Trans. R. Soc. A. 370, 4541 (2012)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    B. Kraus, N. Gisin, R. Renner, Phys. Rev. Lett. 95, 080501 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    T. Yu, J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Department of Physics, Faculty of Science and MathematicsUniversity of NišNišSerbia

Personalised recommendations