Brazilian Journal of Physics

, Volume 47, Issue 3, pp 302–309 | Cite as

Ion-Temperature-Gradient-Driven Modes with Nonthermal Electron Distributions in Bi-ion Dusty Magnetoplasma

  • Javaria Razzaq
  • Qamar-ul-Haque
  • Shahida Nargis
  • Arshad M. Mirza
General and Applied Physics
  • 61 Downloads

Abstract

The effect of nonthermal distributions of electrons on ion-temperature-gradient (ITG)-driven drift modes in the presence of tiny dust particles for bi-ion magneto plasmas is investigated. The dynamics of bi-ions and dust particles is considered for the study of low-frequency (less than the gyrofrequencies of dust and ions) ITG mode. A new dispersion relation is derived and analyzed numerically as well as analytically. Three different distributions for nonthermal electrons (Kappa, q, and Cairns distribution) are used. It is found that the presence of nonthermal electrons in bi-ion dusty magnetoplasma reduces the growth rate of the ITG instability. These results should be useful for laboratory and space plasmas where nonthermal electrons and dust is always present.

Keywords

Ion temperature gradient Nonthermal electron distribution 

Notes

Acknowledgments

We are very thankful to the anonymous referee for pointing out various mistakes, which has indeed improved the quality of the work. This research was partly supported by the Quaid-i-Azam University Research Fund, URF (2016-2017).

References

  1. 1.
    L.I. Rudakov, R.Z. Sagdeev. Sov. Phys. — Dokl. 6, 415 (1961)ADSGoogle Scholar
  2. 2.
    O.P. Pogutse. Sov. Phys. — JETP. 25, 498 (1967)ADSGoogle Scholar
  3. 3.
    B. Coppi, MN Rosenbluth, RZ Sagdeev. Phys. Fluids. 10, 582 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    A. Jerman, P. Andersson, J. Weiland. Nucl. Fusion. 27, 941 (1987)CrossRefGoogle Scholar
  5. 5.
    S.J. Braginskii, M.A. Leontovich. Rev. Plasma Phys. 1, 205 (1965). New York: Consultant BureauADSGoogle Scholar
  6. 6.
    P.K. Shukla, J. Weiland. Phys. Lett. A. 136, 59 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    N. D’Angelo, Planet. Space Sci. 38, 1143 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    F. Melandso. Phys. Scri. 45, 515 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Merlino, in Dusty plasma and application in space and industry, Plasma Physics Applied. in Transworld Research, Kerala, India, ed. by C. Garbbe, (2009)Google Scholar
  10. 10.
    P.K. Shukla, A.A. Mamun. New J. Phys. 5(17), 1–17, 37 (2003)MathSciNetGoogle Scholar
  11. 11.
    M. Horaniya, H.L.F. Houpis, D.A. Mendis. Astrophys Space Sci. 144, 215 (1989)ADSGoogle Scholar
  12. 12.
    A. Hasegawa, Optical Solitons in Fibers (1989)Google Scholar
  13. 13.
    K. Yoshimura, S. Watanabe. J. Phys. Soc. Jpn. 60, 82 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    R.L. Merlino, A.D. Barken, N. Angelo. Phys. Plasmas. 5, 1607 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    P.K. Shukla, M.Y. Yu, R.J. Bharuthram. J. Geophys. Res. 96(A12), 21343 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    N.N. Rao, P.K. Shukla, M.Y. Yu. Planet. Space Sci. 38, 543 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    J. Vranjes, H. Saleem, S. Poedts. Phys. Rev. E. 69, 056404 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Haque, H. Saleem. J. Plasma Phys. 72, 435 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    W.K. Peterson, M.W. Yau, B.A. Whalen. J. Geophys. Res. 98, 11177 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    D.I. Maslennikov, V.S. Mikhailenko, K.N. Stepanov. Plasma Phys. Rep. 23, 1007 (1997)ADSGoogle Scholar
  21. 21.
    A.G. Elfimov, R.M.O. Galvão, I.C. Nascimento, S.G. Amarante. Plasma Phys. Control. Fusion. 39, 1151 (1997)CrossRefGoogle Scholar
  22. 22.
    C.M. Surko, M. Leventhal, A. Passner. Phys. Rev. Lett. 62, 901 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    N. Iwamoto. Phys. Rev. E. 47, 604 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R. Dendy, C.M.C. Nairn, P.K. Shukla. Geophys. Res. Lett. 22, 2709 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    S.P. Christon, D.G. Mitchell, D.J. Williams, L.A. Frank, C.Y. Huang, T.E. Eastman. J. Geophys. Res. 93, 2562 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    R. Smets, D. Delcourt, D. Fontaine. J. Geophys. Res. 103, 20407 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    U. Zakir, Q. Haque, A. Qamar, A.M. Mirza. Astrophys. Space Sci. 350, 565 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Mamun, R.A. Cairns. J. Plasma Phys. 56, 175 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Batool N., Qamar A., Mirza A. M. Phys. Scr. 78(6) (2008)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  • Javaria Razzaq
    • 1
  • Qamar-ul-Haque
    • 2
  • Shahida Nargis
    • 3
  • Arshad M. Mirza
    • 1
  1. 1.Theoretical Plasma Physics Group, Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Theoretical Physics DivisionPINSTECHIslamabadPakistan
  3. 3.Department of MathematicsInternational Islamic UniversityIslamabadPakistan

Personalised recommendations