Skip to main content
Log in

Oblique Interaction of Ion-Acoustic Solitary Waves in e-p-i Plasmas

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, we investigate the oblique collision of two ion-acoustic waves (IAWs) in a three-species plasma composed of electrons, positrons, and ions. We use the extended Poincare-Lighthill-Kuo (PLK) method to derive the two-sided Korteweg-de-Vries (KdV) equations and Hirota’s method for soliton solutions. The effects of the ratio (δ) of electron temperature to positron temperature and the ratio (p) of the number density of positrons to that of electrons on the phase shift are studied. It is observed that the phase shift is significantly influenced by the parameters mentioned above. It is also observed that for some time interval during oblique collision, one practically motionless composite structure is formed, i.e., when two ion-acoustic waves with the same amplitude interact obliquely, a new non-linear wave is formed during their collision, which means that ahead of the colliding ion-acoustic solitary waves, both the amplitude and width are greater that those of the colliding solitary waves. As a result, the nonlinear wave formed after collision is a new one and is delayed. The oblique collision of solitary waves in a two-dimensional geometry is more realistic in high-energy astrophysical pair plasmas such as the magnetosphere of neutron stars and black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Tsytovich, C. B. Wharton, Plasma Phys. Contr. Fusion. 4, 91 (1978)

    Google Scholar 

  2. R. H. Berman, D. J. Tefreault, T. H. Dupree, Phys. Fluids. 28, 155 (1985)

    Article  ADS  Google Scholar 

  3. T. Tajima, T. Taniuti, Phys. Rev. A. 42, 3587 (1990)

    Article  ADS  Google Scholar 

  4. P. K. Shukla, L. Stenflo, Astrophys. Space sci. 209, 323 (1993)

    Article  ADS  Google Scholar 

  5. O. B. Shiryaev, Phys. Plasmas. 13, 112304 (2006)

    Article  ADS  Google Scholar 

  6. N. Shukla, P. K. Shukla, Phys Lett. A. 367, 120 (2007)

    Article  ADS  Google Scholar 

  7. H. R. Miller, P. J. Witta. Active galactic nuclei (Springer-Verlag, Berlin, 1987), p. 202

    Google Scholar 

  8. P. Goldreich, W. H. Julian, Astrophys. J. 157, 869 (1969)

    Article  ADS  Google Scholar 

  9. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  10. E Tandberg-Hansen, A G Emshie. The physics of solar flares (Cambridge Univ. Press, Cambridge, 1988), p. 124

    Google Scholar 

  11. M. J. Ress, in In the very early universe, ed. by G.W. Gibbons, S. W. Hawking, S. Siklas (Cambridge University Press, Cambridge, 1983)

  12. F. B. Rizzato, J. Plasma Phys. 40, 289 (1988)

    Article  ADS  Google Scholar 

  13. V. I. Berezhian, M. Y. El-Ashry, U. A. Mofiz, Phys. Rev. E. 50, 448 (1994)

    Article  ADS  Google Scholar 

  14. S. I. Popal, S. V. Vladimirov, P. K. Shukla, Phys. Plasmas. 2, 716 (1995)

    Article  ADS  Google Scholar 

  15. P. K. Shukla, M. M. Yu, N. L. Tsintsadze, Phys. Fluids. 27, 327 (1984)

    Article  ADS  Google Scholar 

  16. W. Minser, K. S. Throne, J. A Wheeler. Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  17. G. Greaves, M. D. Tinkle, C. M. Surko, Phys. Plasmas. 5, 1439 (1994)

    Article  ADS  Google Scholar 

  18. C. M. Surko, T. Murphy, Phys. Fluids B. 2, 1372 (1990)

    Article  ADS  Google Scholar 

  19. V. I. Berezhiani, M. Y. El-Ashry, U. A. Mofiz, Phys. Rev. E. 50, 448 (1994)

    Article  ADS  Google Scholar 

  20. D. N. Smithe, S. A. Khan, Phys. Plasmas. 14, 052307 (2007)

    Article  Google Scholar 

  21. S. Alis, W. M. Moslem, P. K. Shukla, Phys. Plasmas. 14, 082307 (2007)

    Article  ADS  Google Scholar 

  22. I. Kourakis, F. Verheest, N. F. Cramer, Phys. Plasmas. 14, 022306 (2007)

    Article  ADS  Google Scholar 

  23. A. Mushtaq, H. A. Shah, Phys. Plasmas. 12, 012301 (2005)

    Article  ADS  Google Scholar 

  24. D. S. Shin, Y. D. Jung, Phys. Lett. A. 349, 500 (2006)

    Article  ADS  Google Scholar 

  25. R. S. Tiwari, A. Kaushik, M. K. Mishra, Phys. Lett. A. 365, 335 (2007)

    Article  ADS  Google Scholar 

  26. T. S. Gill, A. Singh, H. Kaur, Phys. Lett. A. 361, 364 (2007)

    Article  ADS  Google Scholar 

  27. Y. N. Nejoh, Aust. J. 50, 309 (1997)

    Article  ADS  Google Scholar 

  28. M. Salahuddin, H. Saleem, M. Saddiq, Phys. Rev. E. 66, 036407 (2002)

    Article  ADS  Google Scholar 

  29. S. Mahmood, A. Mushtaq, H. Saleem, J. New Phys. 5, 28 (2003)

    Article  Google Scholar 

  30. H. Alinejad, S. Sobharian, Phys. Plasmas. 13, 012034 (2006)

    Article  Google Scholar 

  31. K. Roy, M. K. Ghorui, P. Chatterjee, M. Tribeche, Commun. Theor. Phys. 65, 237 (2016)

    Article  ADS  Google Scholar 

  32. G. Mandal, K. Roy, A. Paul, A. Saha, P. Chatterjee, Zeitschrift fü,r Naturforschung A. 70(9), 703 (2015)

    Google Scholar 

  33. N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  34. C. S. Gardner, J. M. Greener, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  35. K. Roy, T. K. Maji, M. K. Ghorui, P. Chatterjee, R Roychowdhury, Astrophys. Space Sci. 352, 151 (2014)

    Article  ADS  Google Scholar 

  36. K. Roy, P. Chatterjee, R Roychowdhury, Phys. Plasmas. 21, 104509 (2014)

    Article  ADS  Google Scholar 

  37. U. N. Ghosh, K. Roy, P. Chatterjee, Phys. Plasmas. 18, 103703 (2011)

    Article  ADS  Google Scholar 

  38. U. N. Ghosh, P. Chatterjee, R. Roychowdhury, Phys. Plasmas. 19, 012113 (2012)

    Article  ADS  Google Scholar 

  39. P. Chatterjee, M. K. Ghorui, C. S. Wong, Phys. Plasmas. 18, 103710 (2011)

    Article  ADS  Google Scholar 

  40. P. Chatterjee, M. K. Ghorui, R Roychowdhury, Pramana-J. Phys. 80, 519 (2013)

    Article  ADS  Google Scholar 

  41. M. K. Ghorui, U. K. Samanta, T. K. Maji, P. Chattrejee, Astrophys. Space Sci. 352, 159 (2014)

    Article  ADS  Google Scholar 

  42. D. Shi-qiang, Appl. Math. Mech. 5, 4 (1984)

    Article  Google Scholar 

  43. P Chatterjee, T. Saha, C.-M. Ryu, Phys. Plasmas. 15, 123702 (2008)

    Article  ADS  Google Scholar 

  44. T. Saha, P. Chatterjee, Phys. Plasmas. 16, 013707 (2009)

    Article  ADS  Google Scholar 

  45. C. H. Sue, R. M. Mirie, J. Fluid Mech. 98, 509 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Jeffery, T. Kawahawa. Asymptotic methods in nonlinear wave theory (Pitman, London, 1982)

    Google Scholar 

  47. G. Huang, M. G. Velarde, Phys. Rev. E. 53, 2988 (1996)

    Article  ADS  Google Scholar 

  48. J. K. Xue, Chin. Phys. 15, 562 (2006)

    Article  ADS  Google Scholar 

  49. J. N. Han, S. L. Du, W. S. Duan, Phys. Plasmas. 15, 112104 (2008)

    Article  ADS  Google Scholar 

  50. G. Z. Liang, J. N. Han, M. M. Lin, J. N. Wei, W. S. Duan, Phys. Plasmas. 16, 073705 (2009)

    Article  ADS  Google Scholar 

  51. S. K. El-Labany, E. F. El-Shamy, M. Sorky, Phys. Plasmas. 17, 113706 (2010)

    Article  ADS  Google Scholar 

  52. Y. Nakamura, J. L. Ferreira, G. O. Ludwig, J. Plasma Phys. 33, 237 (1985)

    Article  ADS  Google Scholar 

  53. X. Jiang, X. Gao, S. Li, Y. Shi, W. Duan, Appl. Math. Comput. 214, 60 (2009)

    MathSciNet  Google Scholar 

  54. M. Akbari-Moghanjoughi, Phys. Lett. A. 374, 1721 (2010)

    Article  ADS  Google Scholar 

  55. S. K. El-Labany, E. F. El-Shamy, E. E. Behery, Phys. Plasmas. 20, 122114 (2013)

    Article  ADS  Google Scholar 

  56. A. P. Misra, A. Barman, Phys. Plasmas. 21, 073702 (2014)

    Article  ADS  Google Scholar 

  57. R. Hirota. The direct method in the soliton theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our deep thanks to the referee for his or her useful comments and suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, T.K., Ghorui, M.K., Saha, A. et al. Oblique Interaction of Ion-Acoustic Solitary Waves in e-p-i Plasmas. Braz J Phys 47, 295–301 (2017). https://doi.org/10.1007/s13538-017-0496-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0496-x

Keywords

Navigation