Brazilian Journal of Physics

, Volume 47, Issue 3, pp 295–301 | Cite as

Oblique Interaction of Ion-Acoustic Solitary Waves in e-p-i Plasmas

  • Tapas Kumar Maji
  • Malay Kumar Ghorui
  • Asit Saha
  • Prasanta Chatterjee
General and Applied Physics


In this study, we investigate the oblique collision of two ion-acoustic waves (IAWs) in a three-species plasma composed of electrons, positrons, and ions. We use the extended Poincare-Lighthill-Kuo (PLK) method to derive the two-sided Korteweg-de-Vries (KdV) equations and Hirota’s method for soliton solutions. The effects of the ratio (δ) of electron temperature to positron temperature and the ratio (p) of the number density of positrons to that of electrons on the phase shift are studied. It is observed that the phase shift is significantly influenced by the parameters mentioned above. It is also observed that for some time interval during oblique collision, one practically motionless composite structure is formed, i.e., when two ion-acoustic waves with the same amplitude interact obliquely, a new non-linear wave is formed during their collision, which means that ahead of the colliding ion-acoustic solitary waves, both the amplitude and width are greater that those of the colliding solitary waves. As a result, the nonlinear wave formed after collision is a new one and is delayed. The oblique collision of solitary waves in a two-dimensional geometry is more realistic in high-energy astrophysical pair plasmas such as the magnetosphere of neutron stars and black holes.


Oblique collision PLK method Hirota method Solitary wave Phase shift 



We would like to express our deep thanks to the referee for his or her useful comments and suggestions which helped to improve the paper.


  1. 1.
    V. Tsytovich, C. B. Wharton, Plasma Phys. Contr. Fusion. 4, 91 (1978)Google Scholar
  2. 2.
    R. H. Berman, D. J. Tefreault, T. H. Dupree, Phys. Fluids. 28, 155 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    T. Tajima, T. Taniuti, Phys. Rev. A. 42, 3587 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    P. K. Shukla, L. Stenflo, Astrophys. Space sci. 209, 323 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    O. B. Shiryaev, Phys. Plasmas. 13, 112304 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    N. Shukla, P. K. Shukla, Phys Lett. A. 367, 120 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H. R. Miller, P. J. Witta. Active galactic nuclei (Springer-Verlag, Berlin, 1987), p. 202Google Scholar
  8. 8.
    P. Goldreich, W. H. Julian, Astrophys. J. 157, 869 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    F. C. Michel, Rev. Mod. Phys. 54, 1 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    E Tandberg-Hansen, A G Emshie. The physics of solar flares (Cambridge Univ. Press, Cambridge, 1988), p. 124Google Scholar
  11. 11.
    M. J. Ress, in In the very early universe, ed. by G.W. Gibbons, S. W. Hawking, S. Siklas (Cambridge University Press, Cambridge, 1983)Google Scholar
  12. 12.
    F. B. Rizzato, J. Plasma Phys. 40, 289 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Berezhian, M. Y. El-Ashry, U. A. Mofiz, Phys. Rev. E. 50, 448 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Popal, S. V. Vladimirov, P. K. Shukla, Phys. Plasmas. 2, 716 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    P. K. Shukla, M. M. Yu, N. L. Tsintsadze, Phys. Fluids. 27, 327 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    W. Minser, K. S. Throne, J. A Wheeler. Gravitation (Freeman, San Francisco, 1973)Google Scholar
  17. 17.
    G. Greaves, M. D. Tinkle, C. M. Surko, Phys. Plasmas. 5, 1439 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    C. M. Surko, T. Murphy, Phys. Fluids B. 2, 1372 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Berezhiani, M. Y. El-Ashry, U. A. Mofiz, Phys. Rev. E. 50, 448 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    D. N. Smithe, S. A. Khan, Phys. Plasmas. 14, 052307 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Alis, W. M. Moslem, P. K. Shukla, Phys. Plasmas. 14, 082307 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    I. Kourakis, F. Verheest, N. F. Cramer, Phys. Plasmas. 14, 022306 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mushtaq, H. A. Shah, Phys. Plasmas. 12, 012301 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D. S. Shin, Y. D. Jung, Phys. Lett. A. 349, 500 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    R. S. Tiwari, A. Kaushik, M. K. Mishra, Phys. Lett. A. 365, 335 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    T. S. Gill, A. Singh, H. Kaur, Phys. Lett. A. 361, 364 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Y. N. Nejoh, Aust. J. 50, 309 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    M. Salahuddin, H. Saleem, M. Saddiq, Phys. Rev. E. 66, 036407 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mahmood, A. Mushtaq, H. Saleem, J. New Phys. 5, 28 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Alinejad, S. Sobharian, Phys. Plasmas. 13, 012034 (2006)CrossRefGoogle Scholar
  31. 31.
    K. Roy, M. K. Ghorui, P. Chatterjee, M. Tribeche, Commun. Theor. Phys. 65, 237 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    G. Mandal, K. Roy, A. Paul, A. Saha, P. Chatterjee, Zeitschrift fü,r Naturforschung A. 70(9), 703 (2015)Google Scholar
  33. 33.
    N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    C. S. Gardner, J. M. Greener, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  35. 35.
    K. Roy, T. K. Maji, M. K. Ghorui, P. Chatterjee, R Roychowdhury, Astrophys. Space Sci. 352, 151 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    K. Roy, P. Chatterjee, R Roychowdhury, Phys. Plasmas. 21, 104509 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    U. N. Ghosh, K. Roy, P. Chatterjee, Phys. Plasmas. 18, 103703 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    U. N. Ghosh, P. Chatterjee, R. Roychowdhury, Phys. Plasmas. 19, 012113 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    P. Chatterjee, M. K. Ghorui, C. S. Wong, Phys. Plasmas. 18, 103710 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    P. Chatterjee, M. K. Ghorui, R Roychowdhury, Pramana-J. Phys. 80, 519 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    M. K. Ghorui, U. K. Samanta, T. K. Maji, P. Chattrejee, Astrophys. Space Sci. 352, 159 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    D. Shi-qiang, Appl. Math. Mech. 5, 4 (1984)CrossRefGoogle Scholar
  43. 43.
    P Chatterjee, T. Saha, C.-M. Ryu, Phys. Plasmas. 15, 123702 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    T. Saha, P. Chatterjee, Phys. Plasmas. 16, 013707 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    C. H. Sue, R. M. Mirie, J. Fluid Mech. 98, 509 (1980)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Jeffery, T. Kawahawa. Asymptotic methods in nonlinear wave theory (Pitman, London, 1982)Google Scholar
  47. 47.
    G. Huang, M. G. Velarde, Phys. Rev. E. 53, 2988 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    J. K. Xue, Chin. Phys. 15, 562 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    J. N. Han, S. L. Du, W. S. Duan, Phys. Plasmas. 15, 112104 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    G. Z. Liang, J. N. Han, M. M. Lin, J. N. Wei, W. S. Duan, Phys. Plasmas. 16, 073705 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    S. K. El-Labany, E. F. El-Shamy, M. Sorky, Phys. Plasmas. 17, 113706 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Nakamura, J. L. Ferreira, G. O. Ludwig, J. Plasma Phys. 33, 237 (1985)ADSCrossRefGoogle Scholar
  53. 53.
    X. Jiang, X. Gao, S. Li, Y. Shi, W. Duan, Appl. Math. Comput. 214, 60 (2009)MathSciNetGoogle Scholar
  54. 54.
    M. Akbari-Moghanjoughi, Phys. Lett. A. 374, 1721 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    S. K. El-Labany, E. F. El-Shamy, E. E. Behery, Phys. Plasmas. 20, 122114 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A. P. Misra, A. Barman, Phys. Plasmas. 21, 073702 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    R. Hirota. The direct method in the soliton theory (Cambridge University Press, Cambridge, 2004)CrossRefMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  • Tapas Kumar Maji
    • 1
    • 2
  • Malay Kumar Ghorui
    • 1
  • Asit Saha
    • 3
  • Prasanta Chatterjee
    • 2
  1. 1.Department of MathematicsB.B. CollegeAsansolIndia
  2. 2.Department of Mathematics, Siksha BhavanaVisva Bharati UniversitySantiniketanIndia
  3. 3.Department of Mathematics, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityRangpo, East-SikkimIndia

Personalised recommendations