Advertisement

Brazilian Journal of Physics

, Volume 47, Issue 3, pp 288–294 | Cite as

Mechanical Analysis and Energy Cycle of Chen Chaotic System

  • Xiyin Liang
  • Guoyuan Qi
General and Applied Physics
  • 168 Downloads

Abstract

This paper formulates the Chen chaotic system to the extended Kolmogorov system, thereby investigating the physical meaning and energy cycle of Chen system. The Casimir function is introduced to analyze the system dynamics, and its time derivation is chosen to formulate energy cycle. The bound of chaotic attractor is obtained by the Casimir function and Lagrange multiplier. The Casimir function reflects the energy conversion and the distance between the orbit and the equilibria. These relationships are illustrated by numerical simulations.

Keywords

Chen system Kolmogorov system Casimir function Energy conversion 

References

  1. 1.
    E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    D. D’Humieres, B.M. R., B.A. Humberman, A. Libchaber, Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A. 26(6), 3483 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    F.A. Hopf, D.L. Kaplan, H.M. Gibbs, R.L. Shoemaker, Bifurcations to chaos in optical bistability. Phys. Rev. A. 25(4), 2172 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H.G. Schuster, W. Just. Deterministic Chaos: An Introduction, 4th edn (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005)CrossRefMATHGoogle Scholar
  5. 5.
    R.H. Simoyi, A. Wolf, H.L. Swinney, One-dimensional dynamics in a multicomponent chemical reaction. Phys. Rev. Lett. 49(4), 245 (1982)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H.L. Swinney, J.P. Gollub. Hydrodynamic Instabilities and the Transition to Turbulence (Springer, Berlin-Heidelberg-New York-Tokyo, 1981)CrossRefMATHGoogle Scholar
  7. 7.
    A. Hernández-García, A. Fernández Barbero, O. Sotolongo-Costa, Non-steady wall-bounded flows of viscoelastic fluids under periodic forcing. Braz. J. Phys. 44(4), 315 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R.M. May, Simple mathematical models with very complicated dynamics. Nature. 261, 459 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    E.D. Souza, M. Lyra, I. Gleria, Critical behavior of the delay-induced chaos transition in a nonlinear model for the immune response. Braz. J. Phys. 39, 431 (2009)ADSCrossRefMATHGoogle Scholar
  10. 10.
    G. Chen, T. Ueta, Yet another chaotic attractor. Int. Bifurcat, J., Chaos. 9(7), 1465 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    J. Lu, G. Chen, A new chaotic attractor coined. Int. Bifurcat, J., Chaos. 12(3), 659 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    G. Qi, G. Chen, M.A.V. Wyk, B.J.V. Wyk, Y. Zhang, A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton. Fract. 38(3), 705 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J. Lu, G. Chen, X. Yu, H. Leung, Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. I. 51(12), 2476 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Qi, G. Chen, S.S.Z. Du, Z. Chen, Z. Yuan, Analysis of a new chaotic system. Physica A. 352 (2), 295 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Wang, Y. Sun, B.J. van Wyk, G. Qi, M.A. van Wyk, A 3-D four-wing attractor and its analysis. Braz. Phys, J.,. 39, 547 (2009)Google Scholar
  16. 16.
    A. Pasini, V. Pelino, A unified view of Kolmogorov and Lorenz systems. Phys. Lett. A. 275, 435 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    V. Pelino, F. Maimone, A. Pasini, Energy cycle for the Lorenz attractor. Chaos Soliton. Fract. 64, 67 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. Gluhovsky, Energy-conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Processes Geophys. 13(2), 125 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    E. Pavlovskaia, M. Wiercigroch, C. Grebogi, Modeling of an impact system with a drift. Phys. Rev. E. 64(2), 056224 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Lu, C. Jarzynski, E. Ott, Apparent topologically forbidden interchange of energy surfaces under slow variation of a Hamiltonian. Phys. Rev. E. 91(5), 052193 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Fitzpatrick, An introduction to celestial mechanics: Cambridge University Press (2012)Google Scholar
  22. 22.
    J. Marsden, T. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd edn (Springer, Berlin, 2002)MATHGoogle Scholar
  23. 23.
    V. Arnold, Kolmogorov’s hydrodynamic attractors. Proc. Soc, R., Lond. A. 434, 19 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    G. Qi, X. Liang, Mechanical analysis of Qi four-wing chaotic system. Nonlinear Dyn. 86(2), 1095 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C.R. Doering, J.D. Gibbon, On the shape and dimension of the Lorenz attractor. Dyn. Stab. Syst. 10(3), 255 (1995)MathSciNetMATHGoogle Scholar
  26. 26.
    P.J. Morrison, Thoughts on brackets and dissipation: Old and new. Journal of Physics: Conference Series. 169 (1), 012006 (2009)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.School of Science and School of Mechanical EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and EnergyTianjin Polytechnic UniversityTianjinChina

Personalised recommendations