Brazilian Journal of Physics

, Volume 47, Issue 3, pp 366–375 | Cite as

Eliminating the Cuspidal Temperature Profile of a Non-equilibrium Chain

  • Michael M. Cândido
  • Welles A. M. Morgado
  • Sílvio M. Duarte Queirós


In 1967, Z. Rieder, J. L. Lebowitz, and E. Lieb (RLL) introduced a model of heat conduction on a crystal that became a milestone problem of non-equilibrium statistical mechanics. Along with its inability to reproduce Fourier’s law—which subsequent generalizations have been trying to amend—the RLL model is also characterized by awkward cusps at the ends of the non-equilibrium chain, an effect that has endured all these years without a satisfactory answer. In this paper, we first show that such trait stems from the insufficiency of pinning interactions between the chain and the substrate. Assuming the possibility of pinning the chain, the analysis of the temperature profile in the space of parameters reveals that for a proper combination of the border and bulk pinning values, the temperature profile may shift twice between the RLL cuspidal behavior and the expected monotonic local temperature evolution along the system, as a function of the pinning. At those inversions, the temperature profile along the chain is characterized by perfect plateaux: at the first threshold, the cumulants of the heat flux reach their maxima and the vanishing of the two-point velocity correlation function for all sites of the chain so that the system behaves similarly to a “phonon box.” On the other hand, at the second change of the temperature profile, we still have the vanishing of the two-point correlation function but only for the bulk, which explains the emergence of the temperature plateau and thwarts the reaching of the maximal values of the cumulants of the heat flux.


Heat fluxes Conductance Conductivity Coupled systems White noise Cumulants 



M.M.C. is grateful to D.K. Fogaça for valuable discussions.


  1. 1.
    H. Nakazawa. On the Lattice Thermal Conduction. Prog. Theor. Phys. Supp. 45, 231–262 (1970)Google Scholar
  2. 2.
    S. Lepri, R. Livi, A. Politi. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)Google Scholar
  3. 3.
    A. Dhar. Heat Transport in low-dimensional systems. Adv. Phys. 57, 457–537 (2008)Google Scholar
  4. 4.
    F. Bonetto, J.L. Lebowitz, L. Rey-Bellet. Fourier Law: a challenge to theorists, Mathematical Physics 2000, Edited by: A Fokas (Imperial College, London), A Grigoryan (Imperial College, London), T Kibble (Imperial College, London), B Zegarlinski (Imperial College, London), 128-150 (2000)Google Scholar
  5. 5.
    R. Kubo, M. Toda, N. Hashitsume, Statistical physics II: Nonequilibrium statistical mechanics (Springer, Berlin, 1991)Google Scholar
  6. 6.
    N.W. Ashcroft, N.D. Mermin, Solid state physics (Rinehart and Winston, New York, 1976)Google Scholar
  7. 7.
    P.M. Chaikin, T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 1995)Google Scholar
  8. 8.
    P.G. Bergmann, J.L. Lebowitz, New approach to nonequilibrium processes. Phys. Rev. 99, 578–587 (1955)Google Scholar
  9. 9.
    Z. Rieder, J.L. Lebowitz, E. Lieb, Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys. 8, 1073–1078 (1967)Google Scholar
  10. 10.
    K. Saito, A. Dhar, Heat Conduction in a Three Dimensional Anharmonic Crystal. Phys. Rev. Lett. 104, 040601 (2010)Google Scholar
  11. 11.
    V. Kannan, Heat conduction in low dimensional lattice systems. Ph.D. Dissertation, School-New Brunswick Rutgers The State University of New Jersey (1995)Google Scholar
  12. 12.
    D.J.R. Mimnagh, Thermal conductivity and dynamics of a chain of free and bound particles. Ph.D. Dissertation, Simon Fraser University (1997)Google Scholar
  13. 13.
    V. Kannan, A. Dhar, J.L. Lebowitz, Nonequilibrium stationary state of a harmonic crystal with alternating masses. Phys. Rev. E 85, 041118 (2012)Google Scholar
  14. 14.
    J.D. Bodyfelt, M. C. Zheng , R. Fleischmann, T. Kottos , Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains. Phys. Rev. E 87, 020101 (2013)Google Scholar
  15. 15.
    G.T. Landi, M.J. de Oliveira. Fourier’s law from a chain of coupled planar harmonic oscillators under energy-conserving noise. Phys. Rev. E 89, 022105 (2014)Google Scholar
  16. 16.
    D. Lacoste, M.A. Lomholt, Stochastic thermodynamics of a tagged particle within a harmonic chain. Phys. Rev. E 91, 022114 (2015)Google Scholar
  17. 17.
    J.P. Huang, K.W. Yu. Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)Google Scholar
  18. 18.
    N. Yang, N. Li, L. Wang, B. Li. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Phys. Rev. B 76, 020301 (2007)Google Scholar
  19. 19.
    G. Casati, J. Ford, F. Vivaldi, W.M. Visscher. One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52, 1861–1864 (1984)Google Scholar
  20. 20.
    D.J.R. Mimnagh, L.E. Ballentine. Thermal conductivity in a chain of alternately free and bound particles,. Phys. Rev. E. 56, 5332 (1997)Google Scholar
  21. 21.
    S. Lepri, R. Livi, A. Politi. On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43, 271–276 (1998)Google Scholar
  22. 22.
    F. Bonetto, J.L. Lebowitz, J. Lukkarinen. Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116, 783–813 (2004)Google Scholar
  23. 23.
    G. Basile, C. Bernardin, S. Olla. Momentum conserving model with anomalous thermal conductivity in low dimensional systems. Phys. Rev. Let. 96, 204303 (2006)Google Scholar
  24. 24.
    G. Basile, C. Bernardin, S. Olla. Thermal conductivity for a momentum conservative model. Commun. Math. Phys. 287(1), 67–98 (2009)Google Scholar
  25. 25.
    C. Bernardin, F. Huveneers, J.L. Lebowitz, C. Liverani, S. Olla. Green-kubo formula for weakly coupled systems with noise. Commun. Math. Phys. 334(3), 1377–1412 (2015)Google Scholar
  26. 26.
    A. Dhar, K. Venkateshan, J.L. Lebowitz. Heat conduction in disordered harmonic lattices with energy-conserving noise. Phys. Rev. E 83, 021108 (2011)Google Scholar
  27. 27.
    G.T. Landi, M.J. de Oliveira. Fourier’s law from a chain of coupled anharmonic oscillators under energy-conserving noise. Phys. Rev. E 89, 052126 (2013)Google Scholar
  28. 28.
    M. Toda. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)Google Scholar
  29. 29.
    D.O. Soares-Pinto, W.A.M. Morgado. Brownian dynamics, time-averaging and colored noise. Physica A 365, 289–299 (2006)Google Scholar
  30. 30.
    D.O. Soares-Pinto, W.A.M. Morgado. Exact time average distribution for a stationary non-Markovian massive Brownian particle coupled to two heat baths. Phys. Rev. E. 77, 011103 (2008)Google Scholar
  31. 31.
    W.A.M. Morgado, D.O. Soares-Pinto. Exact time-averaged thermal conductance for small systems: comparison between direct calculation and Green-Kubo formalism. Phys. Rev. E. 79, 051116 (2009)Google Scholar
  32. 32.
    W.A.M. Morgado, S. M. Duarte Queirós. Role of the nature of noise in the thermal conductance of mechanical systems. Phys. Rev. E. 86, 041108 (2012)Google Scholar
  33. 33.
    W.A.M. Morgado, S. M. Duarte Queirós. Thermostatistics of small nonlinear systems: Gaussian thermal bath. Phys. Rev. E. 90, 022110 (2014)Google Scholar
  34. 34.
    W.A.M. Morgado, S. M. Duarte Queirós. Thermostatistics of small nonlinear systems: Poissonian athermal bath. Phys. Rev. E. 93, 012121 (2016)Google Scholar
  35. 35.
    B. Van der Pol, H. H. Bermmer. Operational calculus based on the two-sided laplace integral (Cambridge University Press, Cambridge, 1950)Google Scholar
  36. 36.
    K.E. Goodson, Y.S. Ju. Heat conduction in novel electronic films. Ann. Rev. Mat. Sci. 29, 261–293 (1999)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Department of PhysicsPUC-RioRio de JaneiroBrazil
  2. 2.National Institute of Science and Technology for Complex SystemsRio de JaneiroBrazil
  3. 3.Centro Brasileiro de Pesquisas FísicasNational Institute of Science and Technology for Complex SystemsRio de JaneiroBrazil

Personalised recommendations