Brazilian Journal of Physics

, Volume 47, Issue 3, pp 268–277 | Cite as

Comparative Investigations of Light Transmission in Aligned and Non-aligned Textures of Homogeneous Mixtures of 4-n-alkyl-4′-Cyanibiphenyl Mesogens at Direct and Reverse smectic Aisotropic liquid Phase Transitions

Condensed Matter
  • 90 Downloads

Abstract

The thermo-optical properties of various types of textures (the homeotropic, planar, and tilted aligned and non-aligned textures) in liquid crystalline materials with smectic A mesophase have been investigated. Investigations have been carried out for large temperature interval and at the direct smectic A mesophase–isotropic liquid (SmA–I) and isotropic liquid–smectic A mesophase (I–SmA) phase transitions that have been carried out. Homogeneous mixtures of 4-n-octyl-4′-cyanobiphenyl with 4-n-decyl-4′-cyanobiphenyl were the objects of the investigations. Temperature dependences of the optical transmission for aligned and non-aligned textures have been measured. Temperature widths of the heterophase regions for the SmA–I and I–SmA phase transitions have been determined. The temperature shift in the optical transmission dependences to low temperatures for the reverse I–SmA phase transition temperatures and the thermal hysteresis has been found for the aligned and non-aligned textures.

Keywords

Liquid crystals Thermo-optical properties Defects Aligned textures Non-aligned textures Biphasic regions 

References

  1. 1.
    P.G. de Gennes, P. Prost, The physics of liquid crystals (Clarendon Press, Oxford, 1993)Google Scholar
  2. 2.
    D.G. Yang, S.T. Wu, Fundamentals of liquid crystal devices (Wiley, New York, 2006)CrossRefGoogle Scholar
  3. 3.
    R.G. Chen, Liquid crystal displays: fundamental physics and technology (Wiley, Hoboken, 2011)CrossRefGoogle Scholar
  4. 4.
    Q. Li, Liquid crystals beyond displays: chemistry, physics, and applications (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  5. 5.
    E. Lueder, Liquid crystal displays: addressing, schemes and electro-optical effects (Wiley, New York, 2001)Google Scholar
  6. 6.
    W. de Boer, Active matrix liquid crystal displays: fundamentals and applications (Burlington, Elsevier, 2005)Google Scholar
  7. 7.
    S. Singh, Liquid crystals. Fundamentals (World Scientific, Singapore, 2002)CrossRefGoogle Scholar
  8. 8.
    P. Yeh, C. Gu, Optics of liquid crystal displays (New York, Wiley, 1999)Google Scholar
  9. 9.
    G. Crawford, Flexible flat panel displays (New York, Wiley, 2005)CrossRefGoogle Scholar
  10. 10.
    J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. Gleeson, P. Raynes (eds.), Handbook of liquid crystals (2014) (Wiley, London, 2014)Google Scholar
  11. 11.
    G. Cinacchi, L. Mederos, E. Velasco, J. Chem. Phys. 121, 3854 (2004)Google Scholar
  12. 12.
    E.R. Soule A.D. Rey, Mol. Simul. 38, 735 (2012)Google Scholar
  13. 13.
    B. Rozic, M. Jagodic, S. Gyergyek, G. Lahajnar, V. Popa-Nita, Z. Jarlicic, M. Drofenik, Z. Kutniak and S. Kralj, NATO Science for Peace and Security Series A: Chemistry and Biology (NATO Publ., 2010) pp. 125–139Google Scholar
  14. 14.
    N. Chaturvedi, S. Pandley, S.N. Tiwari, N.B. Singh, Emerg. Mater. Res. 1, 164 (2012)Google Scholar
  15. 15.
    N. Kapernaum, F. Khecht, C. Scott Hartley, J.C. Roberts, R.P. Lemieux, F. Giessetman, K. Beistein, Formation of smectic phases in binary liquid crystal mixtures with a huge length ratio. J. Org. Chem. 8, 1118 (2012)Google Scholar
  16. 16.
    E. Nowinonowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, W. Piecek, P. Perkowski, K. Ogrodnik, P. Morawiak, E. Miszczyk, Opt. Appl. 42, 167 (2012)Google Scholar
  17. 17.
    I. Chirtoc, M. Chirtoc, C. Glorieux, J. Thoen, Determination of the order parameter and its critical exponent for nCB (n=5-8) liquid crystals from refractive index data. Liq. Cryst. 31, 229 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Nesrullajev, News. Azerbaijan Academy Sci 41, 86 (1985)Google Scholar
  19. 19.
    A. Nesrullajev, Mesomorphism and Electrophysics of Lyotropic Liquid Crystalline Systems, DSc Dissertation (Institute of Physics, Azerbaijan Academy of Sciences, Baku, 1992)Google Scholar
  20. 20.
    L.M. Kljukin, A. Nesrullajev, A.S. Sonin, I.N. Shibaev, Patent of the USSR, No.740212, G 01 N 25/30Google Scholar
  21. 21.
    A. Nesrullajev, S. Salihoğlu, H. Yurtseven, Intern. J. Mod. Phys. B 12, 213 (1998)Google Scholar
  22. 22.
    A. Nesrullajev, N. Avci, Mater. Chem. Phys. 131, 455 (2011)Google Scholar
  23. 23.
    B. Bilgin, Eran B, A. Nesrullajev, N. Yilmaz Canli, Mater. Chem. Phys. 111, 555 (2008)Google Scholar
  24. 24.
    S. Yildiz, A. Nesrullajev, Physica A. 385, 24 (2007)Google Scholar
  25. 25.
    A. Nesrullajev, B. Bilgin Eran, J. Mol. Liq. 209, 25 (2015)Google Scholar
  26. 26.
    A.S. Sonin, Introduction to the physics of liquid crystals (Science Publ, Moscow, 1983)Google Scholar
  27. 27.
    N. Kazanci, A. Nesrullajev, T. Yildiz, Balkan Phys. Lett. 8, 135 (2000)Google Scholar
  28. 28.
    I. Dierking, Textures of liquid crystals (Wiley, Weinheim, 2003)CrossRefGoogle Scholar
  29. 29.
    P. Pardhasaradhi, P.V. Datta Prasad, D. Madhavi Latha, V.G.K.M. Pisipati, G. Padmaja Rani, Phase Trans. 85, 1031 (2012)Google Scholar
  30. 30.
    M. Sharma, C. Kaur, J. Kumar, K. Chandramani Singh, P.C. Jain, J. Phys.: Condens. Matter. 13, 7249 (2001)Google Scholar
  31. 31.
    G.A. Oweimreen, M.A. Morsy, Thermochim. Acta 325, 111 (1999)Google Scholar
  32. 32.
    G.A. Oweimreen, M.A. Morsy, Thermochim. Acta 346, 37 (1999)Google Scholar
  33. 33.
    S. Hosaka, K. Tozaki, H. Hayashi, H. Inaba, Physica B 337, 138 (2003)Google Scholar
  34. 34.
    A. Nesrullajev, B. Bilgin Eran, Mater. Chem. Phys. 93, 21 (2005)Google Scholar
  35. 35.
    A. Nesrullajev, Phase Trans. 83, 326 (2010)Google Scholar
  36. 36.
    H.K. Cammenga, K. Gehrich, S.M. Sarge, Thermochim. Acta 446, 36 (2006)Google Scholar
  37. 37.
    M.A. Anisimov, Mol. Cryst. Liq. Cryst. 162, 1 (1988)Google Scholar
  38. 38.
    K.W. Lee, H.C. Lee, S.H. Yang, C.E. Cha, C.E. Lee, J. Kim, Current Appl. Phys. 1, 529 (2001)Google Scholar
  39. 39.
    P.K. Mukherjee, Phys. Rev. E 71, 061704 (2005)Google Scholar
  40. 40.
    W.H. de Jeu, P. Bordewijk, J. Chem. Phys. 68, 109 (1978)Google Scholar
  41. 41.
    G. Chahine, A.N. Kityk, N. Demerest, F. Jean, K. Knorr, P. Huber, R. Lefort, J.M. Zanotti, D. Morineau, Phys. Rev. E 81, 031703 (2010)Google Scholar
  42. 42.
    A. Nesrullajev, J. Mol. Liq. 215, 503 (2016)Google Scholar
  43. 43.
    A. Nesrullajev, Lithuanian J. Phys. 55, 24 (2015)Google Scholar
  44. 44.
    N. Avcı, A. Nesrullajev, S. Oktik, J. Optoelectr. Adv. Mater. 9, 413 (2007)Google Scholar
  45. 45.
    L. Lysetskiy, V. Panikarskaya, O. Sildetskiy, N. Kasian, S. Kositsyn, P. Shtifanyuk, N. Lebovka, M. Lisunova, O. Melezhuk, Mol. Cryst. Liq. Cryst. 478, 127 (2007)Google Scholar
  46. 46.
    S.K. Sarkar, P.C. Barman, M.K. Das, Physica B 446, 80 (2013)Google Scholar
  47. 47.
    P.G. de Gennes, The physics of liquid crystals (Clarendon Press, Oxford, 1974)MATHGoogle Scholar
  48. 48.
    S. Chandrasekhar, Liquid crystals (Cambridge University Press, Cambidge, 1994)Google Scholar
  49. 49.
    M.R. Benson, A.G. Knisely, M.A. Marciniak, M.G. Seal, A.M. Urbas, IEE Photonics J. 7, 2600613 (2015)Google Scholar
  50. 50.
    S. Visnovski, Czech. J. Phys. 36, 1424 (1986)Google Scholar
  51. 51.
  52. 52.
    M.A. Anisimov, Critical phenomena in liquids and liquid crystals (Gordon and Breach Publ, Amsterdam, 1991)Google Scholar
  53. 53.
    J.C. Toledano, P. Toledano, The landau theory of phase transitions (World Scientific, Singapore, 1987)CrossRefMATHGoogle Scholar
  54. 54.
    P.K. Mukherjee, J. Mol. Liq. 190, 99 (2014)Google Scholar
  55. 55.
    J.C. Toledano, P. Toledano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)Google Scholar
  56. 56.
    J.D. Cognard, Alignment of nematic liquid crystals and their mixtures (Gordon and Breach, London, 1982)Google Scholar
  57. 57.
    T.Y.J. Marusij, Y.A. Reznikov, Y.Y. Reshetniak, A.I. Hijniak, Interaction energy between nematic liquid crystals and surfaces (Institute of Physics of Ukrainian Academy of Sciences Publ, Kiev, Preprint No.81988), pp. 1–10Google Scholar
  58. 58.
    B. Jerome, Rep. Progr. 54, 391 (1991)Google Scholar
  59. 59.
    H. Yokoyama, in Handbook of liquid crystal research, ed by P. J. Collings, J. S. Patel. (Oxford University Press, New York, 1997), pp. 179–235Google Scholar
  60. 60.
    M.G. Tomilin, Interaction between liquid crystals with surfaces (Politechnica Publ, St.Petersburg, 2001)Google Scholar
  61. 61.
    L.M. Blinov, E.I. Katz, A.A. Sonin, Usp. Fiz. Nauk (Sov.) 152, 449 (1987)Google Scholar
  62. 62.
    A.A. Sonin, The surface physics of liquid crystals (Gordon and Breach Publ, Amsterdam, 1995)Google Scholar
  63. 63.
    A.I. Alexe-Ionescu, G. Barbero, I. Komitov, Phys. Rev. E 80, 021701 (2009)Google Scholar
  64. 64.
    A.I. Alexe-Ionescu, R. Barberi, G. Barbero, T. Beica, R. Moldovan, Z. Naturforsch. 47A, 1235 (1992)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Faculty of Natural Sciences, Department of Physics, Laboratory of Liquid and Solid CrystalsMugla Sitki Kocman UniversityMuglaTurkey

Personalised recommendations