Skip to main content
Log in

Changes in Properties of Dielectric Barrier Discharge Plasma Jets for Different Gases and for Insulating and Conducting Transfer Plates

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Dielectric barrier discharge (DBD) plasma jets have been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. This work provides comparisons of DBD plasmas generated using argon (Ar), helium (He), and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions: using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. It was observed that the process of Penning ionization of nitrogen molecules by direct collisions with metastable atoms and molecules is evident and significant only in plasmas that use He as the working gas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of metastable He with N2 molecules determine the vibrational temperature (T vib) values in He plasmas, while in Ar and N2 plasmas, the T vib values are determined mainly by collisions of electrons with N2 molecules. It was noticed that the use of an insulating or a conducting transfer plate as the sample holder affects the results of adhesion between poly(dimethylsiloxane) samples, and it is mainly due to the differences in the plasma power, with a higher plasma power leading to better adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.K. Bibinov, A.A. Fateev, K. Wiesemann, Variations of the gas temperature in He/N2 barrier discharges. Plasma Sources Sci. Technol. 10, 579 (2001)

    Article  ADS  Google Scholar 

  2. A.S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard, E. Stamate, Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sources Sci. Technol. 20, 025008 (2011)

    Article  ADS  Google Scholar 

  3. N. Masoud, K. Martus, M. Figus, K. Becker, Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD). Contrib. Plasma Phys. 45, 30 (2005)

    Article  ADS  Google Scholar 

  4. P. Rajasekaran, N. Bibinov, P. Awakowicz, Quantitative characterization of a dielectric barrier discharge in air applying non-calibrated spectrometer, current measurement and numerical simulation. Meas. Sci. Technol. 23, 085605 (8pp) (2012)

    Article  ADS  Google Scholar 

  5. M. Bashir, J.M. Rees, S. Bashir, W.B. Zimmerman, Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon–ethylenediamine. Phys. Lett. A 378, 2395 (2014)

    Article  ADS  Google Scholar 

  6. M. Machida, Ferrite loaded DBD plasma device. Braz. J. Phys. 45, 132 (2015)

    Article  ADS  Google Scholar 

  7. G.-M. Xu, Y. Ma, G.-J. Zhang, DBD plasma jet in atmospheric pressure argon. IEEE Trans. Plasma Sci. 36, 1352 (2008)

    Article  ADS  Google Scholar 

  8. H. Khatun, A.K. Sharma, P.K. Barhai, Experimental study of low-pressure nitrogen dielectric barrier discharge. Braz. J. Phys. 40, 450 (2010)

    Article  Google Scholar 

  9. I.A. Shkurenkov, Y.A. Mankelevich, T.V. Rakhimova, The influence of the discharge parameters on the plasma spatial structuring in argon DBDs. Eur. Phys. J. D 62, 213 (2011)

    Article  ADS  Google Scholar 

  10. G.-D. Wei, C.-S. Ren, M.-Y. Qian, Q.-Y. Nie, Optical and electrical diagnostics of cold Ar atmospheric pressure plasma jet generated with a simple DBD configuration. IEEE Trans. Plasma Sci. 39, 1842 (2011)

    Article  ADS  Google Scholar 

  11. S. Müller, T. Krähling, D. Veza, V. Horvatic, C. Vadla, J. Franzke, Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim. Acta Part B 85, 104 (2013)

    Article  ADS  Google Scholar 

  12. Y.C. Hong, H.S. Uhm, W.J. Yi, Atmospheric pressure nitrogen plasma jet: observation of striated multilayer discharge patterns. Appl. Phys. Lett. 93, 051504 (2008)

    Article  ADS  Google Scholar 

  13. J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, Three distinct modes in a cold atmospheric pressure plasma jet. J. Phys. D. Appl. Phys. 43, 075201 (2010)

    Article  ADS  Google Scholar 

  14. F. Massines, P. Segur, N. Gherardi, C. Khamphan, A. Ricard, Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surf. Coat. Technol. 174, 8 (2003)

    Article  Google Scholar 

  15. Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, Y. Pan, Optical and electrical diagnostics of an atmospheric pressure room-temperature plasma plume. J. Appl. Phys. 107, 063308 (2010)

    Article  ADS  Google Scholar 

  16. N.K. Bibinov, A.A. Fateev, K. Wiesemann, On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He–N2 mixtures. J. Phys. D. Appl. Phys. 34, 1819 (2001)

    Article  ADS  Google Scholar 

  17. A. Sarani, A.Y. Nikiforov, C. Leys, Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys. of Plasmas 17, 063504 (2010)

    Article  ADS  Google Scholar 

  18. K. Malecha, A PDMS–LTCC bonding using atmospheric pressure plasma for microsystem applications. Sens. and Actuators B 181, 486 (2013)

    Article  Google Scholar 

  19. P. Slepicka, N.S. Kasálková, E. Stránská, L. Bacáková, V. Svorcík, Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 7, 535 (2013)

  20. K.G. Kostov, T.M.C. Nishime, A.H.R. Castro, A. Toth, L.R.O. Hein, Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 314, 367 (2014)

    Article  ADS  Google Scholar 

  21. F. Nascimento, S. Moshkalev, M. Machida, S. Parada, Plasma treatment of poly(dimethylsiloxane) surfaces using a compact atmospheric pressure dielectric barrier discharge device for adhesion improvement. Jpn. J. Appl. Phys. 55, 021602 (2016)

    Article  ADS  Google Scholar 

  22. T.D. Märk, H.J. Oskam, Ion production and loss processes in helium-nitrogen mixtures. Phys. Rev. A 4, 1445 (1971)

    Article  ADS  Google Scholar 

  23. W. Lindinger, F. Howorka, P. Lukac, S. Kuhn, H. Villinger, E. Alge, H. Ramler, Charge transfer of Ar++ N2 ↔N2 + + Ar at near thermal energies. Phys. Rev. A 23, 2319 (1981)

    Article  ADS  Google Scholar 

  24. A. Plain, J. Jolly, Quenching rate constants for N2 +(B2Σu +, v' = 0,1,2) with N2 and Ne. Chem. Phys. Lett. 111, 133 (1984)

    Article  ADS  Google Scholar 

  25. L.G. Piper, Quenching rate coefficients for N2(a'1Σu ). J. Chem. Phys. 87, 1625 (1987)

    Article  ADS  Google Scholar 

  26. R. Brandenburg, V.A. Maiorov, Y.B. Golubovskii, H.-E. Wagner, J. Behnke, J.F. Behnke, Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. J. Phys. D. Appl. Phys. 38, 2187 (2005)

    Article  ADS  Google Scholar 

  27. J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, Remote lasing in air by recombination and electron impact excitation of molecular nitrogen. J. Appl. Phys. 111, 033105 (2012)

    Article  ADS  Google Scholar 

  28. N Dyatko and A Napartovich, “Ionization mechanisms in Ar:N2 glow discharge at elevated pressures”, 41st Plasmadynamics and Lasers Conference (2010) AIAA 2010–4884

  29. G.N. Hays, H.J. Oskam, Reaction rate constant for 2N2(A3Σu +) → N2(C 3Πu) + N2(X 1Σg +, ν' > 0). J. Chem. Phys. 59, 6088 (1973)

    Article  ADS  Google Scholar 

  30. V. Guerra, J. Loureiro, Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge. Plasma Sources Sci. Technol. 6, 361 (1997)

    Article  ADS  Google Scholar 

  31. V.G. Anicich, Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds. J. Phys. Chem. Ref. Data 22, 1469 (1993)

    Article  ADS  Google Scholar 

  32. V. Guerra, P.A. Sá, J. Loureiro, Electron and metastable kinetics in the nitrogen afterglow. Plasma Sources Sci. Technol. 12, S8 (2003)

    Article  Google Scholar 

  33. T.D. Märk, Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV. J. Chem. Phys. 63, 3731 (1975)

    Article  Google Scholar 

  34. A. Fridman, Plasma chemistry (Cambridge University Press, New York, 2008)

    Book  Google Scholar 

  35. M. Touzeau, D. Pagnon, Vibrational excitation of N2(C) and N2(B) by metastable argon atoms and the determination of the branching ratio. Chem. Phys. Lett. 53, 355 (1978)

    Article  ADS  Google Scholar 

  36. A.E. Belikov, Rotational and vibrational excitation of the N2 +(B) state in a He + N2 electron-beam plasma. Chem. Phys. 215, 97 (1997)

    Article  ADS  Google Scholar 

  37. D E Ashpis, M C Laun, E L Griebeler, “Progress toward accurate measurements of power consumptions of DBD plasma actuators”, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio 44135, Tech. Rep. NASA/TM-2012-217449, (2012) http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120009957.pdf

  38. M. Holub, On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int. J. Appl. Electrom. 39, 81 (2012)

    ADS  Google Scholar 

  39. O. Motret, C. Hibert, S. Pellerin, J.M. Pouvesle, Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge—gas temperature and molecular fraction effects. J. Phys. D. Appl. Phys. 33, 1493 (2000)

    Article  ADS  Google Scholar 

  40. S.Y. Moon, W. Choe, A comparative study of rotational temperatures using diatomic OH, O2 and N2 + molecular spectra emitted from atmospheric plasmas. Spectrochim. Acta Part B 58, 249 (2003)

    Article  ADS  Google Scholar 

  41. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23, 023001 (2014)

    Article  ADS  Google Scholar 

  42. SpecAir software, http://specair-radiation.net/ (last access in March, 2015)

  43. W. Jiang, J. Tang, Y. Wang, W. Zhao, Y. Duan, Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air. Sci. Rep. 4, 6323 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fellype do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, F., Moshkalev, S. & Machida, M. Changes in Properties of Dielectric Barrier Discharge Plasma Jets for Different Gases and for Insulating and Conducting Transfer Plates. Braz J Phys 47, 278–287 (2017). https://doi.org/10.1007/s13538-017-0492-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0492-1

Keywords

Navigation