Brazilian Journal of Physics

, Volume 47, Issue 3, pp 278–287 | Cite as

Changes in Properties of Dielectric Barrier Discharge Plasma Jets for Different Gases and for Insulating and Conducting Transfer Plates

  • Fellype do Nascimento
  • Stanislav Moshkalev
  • Munemasa Machida
General and Applied Physics


Dielectric barrier discharge (DBD) plasma jets have been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. This work provides comparisons of DBD plasmas generated using argon (Ar), helium (He), and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions: using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. It was observed that the process of Penning ionization of nitrogen molecules by direct collisions with metastable atoms and molecules is evident and significant only in plasmas that use He as the working gas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of metastable He with N2 molecules determine the vibrational temperature (T vib) values in He plasmas, while in Ar and N2 plasmas, the T vib values are determined mainly by collisions of electrons with N2 molecules. It was noticed that the use of an insulating or a conducting transfer plate as the sample holder affects the results of adhesion between poly(dimethylsiloxane) samples, and it is mainly due to the differences in the plasma power, with a higher plasma power leading to better adhesion.


DBD plasma Plasma jet Plasma spectroscopy PDMS Adhesion 



This work was supported by CAPES and CNPq.


  1. 1.
    N.K. Bibinov, A.A. Fateev, K. Wiesemann, Variations of the gas temperature in He/N2 barrier discharges. Plasma Sources Sci. Technol. 10, 579 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard, E. Stamate, Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples. Plasma Sources Sci. Technol. 20, 025008 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    N. Masoud, K. Martus, M. Figus, K. Becker, Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD). Contrib. Plasma Phys. 45, 30 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    P. Rajasekaran, N. Bibinov, P. Awakowicz, Quantitative characterization of a dielectric barrier discharge in air applying non-calibrated spectrometer, current measurement and numerical simulation. Meas. Sci. Technol. 23, 085605 (8pp) (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Bashir, J.M. Rees, S. Bashir, W.B. Zimmerman, Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon–ethylenediamine. Phys. Lett. A 378, 2395 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M. Machida, Ferrite loaded DBD plasma device. Braz. J. Phys. 45, 132 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    G.-M. Xu, Y. Ma, G.-J. Zhang, DBD plasma jet in atmospheric pressure argon. IEEE Trans. Plasma Sci. 36, 1352 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. Khatun, A.K. Sharma, P.K. Barhai, Experimental study of low-pressure nitrogen dielectric barrier discharge. Braz. J. Phys. 40, 450 (2010)CrossRefGoogle Scholar
  9. 9.
    I.A. Shkurenkov, Y.A. Mankelevich, T.V. Rakhimova, The influence of the discharge parameters on the plasma spatial structuring in argon DBDs. Eur. Phys. J. D 62, 213 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G.-D. Wei, C.-S. Ren, M.-Y. Qian, Q.-Y. Nie, Optical and electrical diagnostics of cold Ar atmospheric pressure plasma jet generated with a simple DBD configuration. IEEE Trans. Plasma Sci. 39, 1842 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Müller, T. Krähling, D. Veza, V. Horvatic, C. Vadla, J. Franzke, Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim. Acta Part B 85, 104 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Y.C. Hong, H.S. Uhm, W.J. Yi, Atmospheric pressure nitrogen plasma jet: observation of striated multilayer discharge patterns. Appl. Phys. Lett. 93, 051504 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, Three distinct modes in a cold atmospheric pressure plasma jet. J. Phys. D. Appl. Phys. 43, 075201 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    F. Massines, P. Segur, N. Gherardi, C. Khamphan, A. Ricard, Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surf. Coat. Technol. 174, 8 (2003)CrossRefGoogle Scholar
  15. 15.
    Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, Y. Pan, Optical and electrical diagnostics of an atmospheric pressure room-temperature plasma plume. J. Appl. Phys. 107, 063308 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    N.K. Bibinov, A.A. Fateev, K. Wiesemann, On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He–N2 mixtures. J. Phys. D. Appl. Phys. 34, 1819 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    A. Sarani, A.Y. Nikiforov, C. Leys, Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: optical emission spectroscopy and temperature measurements. Phys. of Plasmas 17, 063504 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K. Malecha, A PDMS–LTCC bonding using atmospheric pressure plasma for microsystem applications. Sens. and Actuators B 181, 486 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Slepicka, N.S. Kasálková, E. Stránská, L. Bacáková, V. Svorcík, Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 7, 535 (2013)Google Scholar
  20. 20.
    K.G. Kostov, T.M.C. Nishime, A.H.R. Castro, A. Toth, L.R.O. Hein, Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 314, 367 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    F. Nascimento, S. Moshkalev, M. Machida, S. Parada, Plasma treatment of poly(dimethylsiloxane) surfaces using a compact atmospheric pressure dielectric barrier discharge device for adhesion improvement. Jpn. J. Appl. Phys. 55, 021602 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    T.D. Märk, H.J. Oskam, Ion production and loss processes in helium-nitrogen mixtures. Phys. Rev. A 4, 1445 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    W. Lindinger, F. Howorka, P. Lukac, S. Kuhn, H. Villinger, E. Alge, H. Ramler, Charge transfer of Ar++ N2 ↔N2 + + Ar at near thermal energies. Phys. Rev. A 23, 2319 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    A. Plain, J. Jolly, Quenching rate constants for N2 +(B2Σu +, v' = 0,1,2) with N2 and Ne. Chem. Phys. Lett. 111, 133 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    L.G. Piper, Quenching rate coefficients for N2(a'1Σu ). J. Chem. Phys. 87, 1625 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    R. Brandenburg, V.A. Maiorov, Y.B. Golubovskii, H.-E. Wagner, J. Behnke, J.F. Behnke, Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. J. Phys. D. Appl. Phys. 38, 2187 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, M. Scully, Remote lasing in air by recombination and electron impact excitation of molecular nitrogen. J. Appl. Phys. 111, 033105 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    N Dyatko and A Napartovich, “Ionization mechanisms in Ar:N2 glow discharge at elevated pressures”, 41st Plasmadynamics and Lasers Conference (2010) AIAA 2010–4884Google Scholar
  29. 29.
    G.N. Hays, H.J. Oskam, Reaction rate constant for 2N2(A3Σu +) → N2(C 3Πu) + N2(X 1Σg +, ν' > 0). J. Chem. Phys. 59, 6088 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    V. Guerra, J. Loureiro, Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge. Plasma Sources Sci. Technol. 6, 361 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    V.G. Anicich, Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds. J. Phys. Chem. Ref. Data 22, 1469 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    V. Guerra, P.A. Sá, J. Loureiro, Electron and metastable kinetics in the nitrogen afterglow. Plasma Sources Sci. Technol. 12, S8 (2003)CrossRefGoogle Scholar
  33. 33.
    T.D. Märk, Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV. J. Chem. Phys. 63, 3731 (1975)CrossRefGoogle Scholar
  34. 34.
    A. Fridman, Plasma chemistry (Cambridge University Press, New York, 2008)CrossRefGoogle Scholar
  35. 35.
    M. Touzeau, D. Pagnon, Vibrational excitation of N2(C) and N2(B) by metastable argon atoms and the determination of the branching ratio. Chem. Phys. Lett. 53, 355 (1978)ADSCrossRefGoogle Scholar
  36. 36.
    A.E. Belikov, Rotational and vibrational excitation of the N2 +(B) state in a He + N2 electron-beam plasma. Chem. Phys. 215, 97 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    D E Ashpis, M C Laun, E L Griebeler, “Progress toward accurate measurements of power consumptions of DBD plasma actuators”, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio 44135, Tech. Rep. NASA/TM-2012-217449, (2012)
  38. 38.
    M. Holub, On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int. J. Appl. Electrom. 39, 81 (2012)ADSGoogle Scholar
  39. 39.
    O. Motret, C. Hibert, S. Pellerin, J.M. Pouvesle, Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge—gas temperature and molecular fraction effects. J. Phys. D. Appl. Phys. 33, 1493 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    S.Y. Moon, W. Choe, A comparative study of rotational temperatures using diatomic OH, O2 and N2 + molecular spectra emitted from atmospheric plasmas. Spectrochim. Acta Part B 58, 249 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23, 023001 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    SpecAir software, (last access in March, 2015)
  43. 43.
    W. Jiang, J. Tang, Y. Wang, W. Zhao, Y. Duan, Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air. Sci. Rep. 4, 6323 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Center for Semiconductor Components and NanotechnologiesState University of CampinasCampinasBrazil
  2. 2.Instituto de Física “Gleb Wataghin”State University of CampinasCampinasBrazil

Personalised recommendations