Advertisement

Brazilian Journal of Physics

, Volume 47, Issue 3, pp 239–267 | Cite as

Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers

  • Saeed Rouhi
  • Amin Atfi
Condensed Matter

Abstract

Molecular dynamics simulations are used here to study the interactions between BmNn graphyne-like monolayers and four different polymer chains. BN, B1N9, and B2N8 graphyne-like monolayers are selected from the family of BmNn graphyne-like monolayers. It is observed that increasing the number of B atoms in the structure of BmNn graphyne-like monolayers results in larger interaction energies of nanosheet/polymer systems. It is also shown that the polymer chains with the linear adsorbed configurations on the nanosheets have larger interaction energies with the nanosheets. Investigating the effect of number of polymer repeat units on the polymer/nanosheet interaction energy, it is observed that increasing the number of repeat units of polymers leads to enhancing the polymer/nanosheet interaction energy.

Keywords

Molecular dynamics simulations BmNn graphyne-like monolayers Polymer chains Interaction energy Radius of gyration 

References

  1. 1.
    R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4, 459–464 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    T.C. Clancy, T.S. Gates, Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47, 5990–5996 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRefGoogle Scholar
  5. 5.
    Q. Zheng, D. Xia, Q. Xue, K. Yan, X. Gao, Q. Li, Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube–polyethylene composite system. Appl. Surf. Sci. 255, 3534–3543 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    N.G. Sahooa, S. Rana, J.W. Cho, L. Li, S.H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867 (2010)CrossRefGoogle Scholar
  7. 7.
    M.M. Rahmana, S. Zainuddin, M.V. Hosur, J.E. Malone, M.B.A. Salama, A. Kumar, S. Jeelani, Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Physical interactions at carbon nanotube-polymer interface. Polymer 44, 7757–7764 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Xu, Z. Jia, D. Wu, Q. Han, T. Meek, Fabrication of nylon-6/carbon nanotube composites. J. Electron. Mater. 35, 954–957 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hwang, J. Jang, K. Hong, K.N. Kim, J.H. Han, K. Shin, C.E. Park, Poly (3-hexylthiophene) wrapped carbon nanotube/poly (dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49, 106–110 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Gomulya, G.D. Costanzo, E.J.F. de Carvalho, S.Z. Bisri, V. Derenskyi, M. Fritsch, N. Fröhlich, S. Allard, P. Gordiichuk, A. Herrmann, S.J. Marrink, M.C. dos Santos, U. Scherf, M.A. Loi, Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 25, 2948–2956 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Mulla, S. Liang, H. Shaik, E.A. Younes, A. Adronov, Y. Zhao, Dithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes. Chem. Commun. 51, 149–152 (2015)CrossRefGoogle Scholar
  14. 14.
    S.D. Stranks, C.K. Yong, J.A. Alexander-Webber, C. Weisspfennig, M.B. Johnston, L.M. Herz, R.J. Nicholas, Nanoengineering coaxial carbon nanotube–dual-polymer heterostructures. ACS Nano 6, 6058–6066 (2012)CrossRefGoogle Scholar
  15. 15.
    S.S. Spearman, F. Irin, I.V. Rivero, M.J. Green, N. Abidi, Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites. Polymer 56, 476–481 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Gerstel, S. Klumpp, F. Hennrich, A. Poschlad, V. Meded, E. Blasco, W. Wenzel, M.M. Kappes, C. Barner-Kowollik, Highly selective dispersion of single-walled carbon nanotubes via polymer wrapping: a combinatorial study via modular conjugation. ACS Macro Lett. 3, 10–15 (2013)CrossRefGoogle Scholar
  17. 17.
    P. Deria, C.D. Von Bargen, J.H. Olivier, A.S. Kumbhar, J.G. Saven, M.J. Therien, Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers. J. Am. Chem. Soc. 135, 16220–16234 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.H. Xie, A.K. Soh, Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater. Lett. 59, 971–975 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Wei, Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 6, 1627–1631 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    W. Liu, C.L. Yang, Y.T. Zhu, M. Wang, Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly (phenylacetylene)/poly (p-phenylenevinylene) considering repeat unit arrangements and conformations: a molecular dynamics simulation study. J. Phys. Chem. C112, 1803–1811 (2008)Google Scholar
  21. 21.
    C. Caddeo, C. Melis, L. Colombo, A. Mattoni, Understanding the helical wrapping of poly (3-hexylthiophene) on carbon nanotubes. J. Phys. Chem. C 114, 21109–21113 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Minoia, L. Chen, D. Beljonne, R. Lazzaroni, Molecular modeling study of the structure and stability of polymer/carbon nanotube interfaces. Polymer 53, 5480–5490 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Gao, M.A. Loi, E.J.F. de Carvalho, M.C. dos Santos, Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS Nano 5, 3993–3999 (2011)CrossRefGoogle Scholar
  24. 24.
    C.D. Von Bargen, C.M. Mac Dermaid, O.S. Lee, P. Deria, M.J. Therien, J.G. Saven, Origins of the helical wrapping of Phenyleneethynylene polymers about single-walled carbon nanotubes. J. Phys. Chem. B 117, 12953–12965 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, J. Zhao, N. Wei, J. Jiang, Y. Gong, T. Rabczuk, Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer. Compos. Part B 45, 1714–1721 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Rouhi, Y. Alizadeh, R. Ansari, On the wrapping of poly (phenylacetylene), polystyrene sulfonate and polyvinyl pyrrolidone polymer chains around single-walled carbon nanotubes using molecular dynamics simulations. Fibers and Polymers 15, 1123–1128 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Rouhi, Y. Alizadeh, R. Ansari, On the wrapping of polyglycolide, poly (ethylene oxide), and polyketone polymer chains around single-walled carbon nanotubes using molecular dynamics simulations. Braz. J. Phys. 45, 10–18 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations. Appl. Surf. Sci. 292, 958–970 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    S. Rouhi, Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers and Polymers 17, 333–342 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  34. 34.
    C.Y. Won, S. Joseph, N.R. Aluru, Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J. Chem. Phys. 125, 114701 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    T.A. Hilder, R. Yang, V. Ganesh, D. Gordon, A. Bliznyuk, A.P. Rendell, S.H. Chung, Validity of current force fields for simulations on boron nitride nanotubes. Micro & Nano Letters 5, 150–156 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Maruyama, T. Kimura, Molecular dynamics simulation of hydrogen storage in single-walled carbon nanotubes, in 2000 ASME Intern. Mech. Eng. Congr. and Exhibit. 405–409 (2000)Google Scholar
  37. 37.
    M.P. Allen, D. J. Tildesley, Computer simulation of liquids, 1st edn. (Oxford university press, Great Britain, 1989)Google Scholar
  38. 38.
    LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov. Accessed 10 April 2014
  39. 39.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)ADSCrossRefMATHGoogle Scholar
  40. 40.
    S.S. Tallury, M.A. Pasquinelli, Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J. Phys. Chem. B 114, 9349–9355 (2010)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Langarud BranchIslamic Azad UniversityLangarudIran
  2. 2.Department of Mechanical Engineering, Langarud BranchIslamic Azad UniversityLangarudIran

Personalised recommendations