Brazilian Journal of Physics

, Volume 47, Issue 2, pp 151–156 | Cite as

On the Coexistence of Superconductivity and Magnetic Ordering in Unconventional Superconductors

  • Fillipi Klos Rodrigues de Campos
  • Fernando Zanella
  • C. A. Dartora
Condensed Matter
  • 109 Downloads

Abstract

It is demonstrated that the coexistence of superconductivity and magnetic ordering, occurring, for instance, in iron-based pnictides and uranium compounds, is not forbidden by classical Maxwell’s equations and London-type equations. It predicts simply that internal magnetization is allowed but localized magnetic moments are screened at distances of the order of the London penetration depth. A microscopic theory is considered for the case of ferromagnetic ordering, described in simple terms by electron-magnon coupling. For the sake of simplicity, we assume that itinerant electrons are not responsible for the magnetic ordering, but interact with phonon and magnon excitations, leading to an alternative Cooper pair channel. The temperature dependence and the isotope effect of the superconducting gap is also analysed.

Keywords

Iron-based superconductors London equations Unconventional superconductivity BCS theory 

Notes

Acknowledgments

C.A. Dartora would like to thank the Brazilian agency CNPq for partial financial support through grant and scholarship CNPq 471521/2013-2 and 301894/2014-0.

References

  1. 1.
    C. Kittel, The Quantum Theory of Solids, 1st ed. (John Wiley and Sons, 1963)Google Scholar
  2. 2.
    A. Altland, B. Simons, Condensed Matter Field Theory, 2nd edn. (Cambridge University Press, 2010)Google Scholar
  3. 3.
    O. Madelung. Introduction to Solid State Physics, 3rd edn (Springer, Berlin, 1996)Google Scholar
  4. 4.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (Dover Publications 2004, Under Permission of Mcgraw-Hill, New York)Google Scholar
  5. 5.
    J.R. Schrieffer, M. Tinkham, Rev. Mod. Phys. 71, S313 (1999)CrossRefGoogle Scholar
  6. 6.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Maxwell, Phys. Rev. 78, 477 (1950)ADSCrossRefGoogle Scholar
  8. 8.
    E. Maxwell, M. Strongin, T.B. Reed, Phys. Rev. 166, 457 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    J. de Launay, Phys. Rev. 93, 661 (1954)ADSCrossRefGoogle Scholar
  10. 10.
    A. Bill, V.Z. Kresin, S.A. Wolf, Phys. Rev. B. 57, 10814 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    H. Rietschel, Z. Physik B. 22, 133 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    K.A. Müller, J.G. Bednorz, Science. 237, 1133 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mann, Nature. 475, 280 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W.L. McMillan, Phys. Rev. 167, 331 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature. 525, 73 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    N.W. Aschcroft, Phys. Rev. Lett. 21, 1748 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    N.W. Aschcroft, Phys. Rev. Lett. 92, 187002 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    C. de la Cruz, Q. Huang, J.W. Lynn, J. Li, W. Ratcliff, J.L. Zarestky, H.A. Mook, G.F. Chen, J.L. Luo, N.L. Wang, P. Dai, Nature. 453, 899 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P. Steiner, D. Gumprecht, S. Hüfner, Phys. Rev. Lett. 30, 1132 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    H. Hosono, K. Tanabe, E. Takayama-Muromachi, H. Kageyama, S. Yamanaka, H. Kumakura, M. Nohara, H. Hiramatsu, S. Fujitsu, Sci. Technol. Adv. Mater. 16, 033503 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, C. Felser, Nat. Mater. 8, 630 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Nature. 453, 761 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    P.M. Shirage, K. Miyazawa, H. Kito, H. Eisaki, A. Iyo, Phys. Rev. B. 78, 172503 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    K. Sasmal, B. Lv, B. Lorenz, A.M. Guloy, F. Chen, Y.-Y. Xue, C.-W. Chu, Phys. Rev. Lett. 101, 107007 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy, Phys. Rev. B. 78, 060505 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T.R. Kirkpatrick, D. Belitz, Phys. Rev. B. 67, 024515 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Dikin, M. Mehta, C.W. Bark, C.M. Folkman, C.B. Eom, V. Chandrasekhar, Phys. Rev. Lett. 107, 056802 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    N.I. Karchev, K.B. Blagoev, K.S. Bedell, P.B. Littlewood, Phys. Rev. Lett. 86, 846 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    W.-H. Li, C.-W. Wang, C.-Y. Li, C.K. Hsu, C.C. Yang, C.-M. Wu, Phys. Rev. B. 77, 094508 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A. Ptok, M.M. Maska, M. Mierzejewski, Phys. Rev. B. 84, 094526 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    B.T. Matthias, H. Suhl, Phys. Rev. Lett. 4, 51 (1960)ADSCrossRefGoogle Scholar
  33. 33.
    D.K. Finnemore, D.C. Hopkins, P.E. Palmer, Phys. Rev. Lett. 15, 891 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    J. Ashkenazi, C.G. Kuper, A. Ron, Phys. Rev. B. 28, 418 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Nass, K. Levin, G.S. Grest, Phys. Rev. B. 23, 1111 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    W. Zhang, C.A.R. Sá de Melo, Phys. Rev. Lett. 97, 047001 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    E. Dagotto, Rev. Mod. Phys. 85, 849 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    K. Scharnberg, R.A. Klemm, Phys. Rev. B. 22, 5233 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    K. Scharnberg, R.A. Klemm, Phys. Rev. Lett. 54, 2445 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    F. Hardy, A.D. Huxley, Phys. Rev. Lett. 94, 247006 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    A. de Visser, N.T. Huy, A. Gasparini, D.E. de Nijs, D. Andreica, C. Baines, A. Amato, Phys. Rev. Lett. 102, 167003 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    D. Aoki, J. Flouquet, J. Phys. Soc. Jpn. 81, 011003 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Machida, A. Itoh, Y. So, K. Izawa, Y. Haga, E. Yamamoto, N. Kimura, Y. Onuki, Y. Tsutsumi, K. Machida, Phys. Rev. Lett. 108, 157002 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    R.A. Klemm, Phys. C. 341–348, 839 (2000)CrossRefGoogle Scholar
  47. 47.
    R.A. Klemm, Phys. C. 514, 86 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    P.M. Shirage, K. Kihou, K. Miyazawa, C.-H. Lee, H. Kito, Y. Yoshida, H. Eisaki, Y. Tanaka, A. Iyo, Phys. C: Supercond. 470, S291 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  • Fillipi Klos Rodrigues de Campos
    • 1
  • Fernando Zanella
    • 1
  • C. A. Dartora
    • 1
  1. 1.Electrical Engineering DepartmentFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations