Brazilian Journal of Physics

, Volume 47, Issue 2, pp 197–214 | Cite as

Substructures in Simulations of Relativistic Jet Formation

  • Raphael de Oliveira Garcia
  • Samuel Rocha de Oliveira
Particles and Fields
  • 81 Downloads

Abstract

We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

Keywords

Relativistic processes Magnetohydrodynamics Astrophysical systems Accretion disk Jet 

References

  1. 1.
    P. Anninos, P.C. Fragile, J.D. Salmonson, ApJ 635, 7 (1981)Google Scholar
  2. 2.
    X. Bai, J.M. Stone, ApJ 767, 30 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Balbás, E. Tadmor, C.-C. Wu, J. Comput. Phys 201, 261 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    V.S. Beskin, Phys Uspekhi, IOP 53, 1199 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    V.S. Beskin. MHD Flows in compact astrophysical objects (Springer, Heidelberg, 2010)CrossRefMATHGoogle Scholar
  6. 6.
    R.D. Blandford, MNRAS 199, 883 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    Bromberg O., et al., arXiv:1107.1326v1 (2011)
  8. 8.
    S.K. Chakrabarti, Phys. Rep. 266, 229 (1996)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Ciardi, ApJ 691, L147 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    L. Del Zanna, et al., A& A 473, 11 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A. Dedner, et al., J. Comput. Phys 175, 645 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Dennet-Thorne, et al., arXiv:astro-ph/9706279v2 (1997)
  13. 13.
    H. Dimmelmeier, J. Novak, P. Cerdá-Durán, Coconut code (2008)Google Scholar
  14. 14.
    S.S. Doeleman, et al., Science 338, 255 (2012)CrossRefGoogle Scholar
  15. 15.
    J.A. Font, Living Rev. Relativity, 11 (2008)Google Scholar
  16. 16.
    J.A. Font, F. Daigne, MNRAS 334, 383 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    C.F. Gammie, J.C. McKinney, G. Toth, ApJ 589, 444 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    R.O. Garcia, Campinas University, Phd Thesis (2014)Google Scholar
  19. 19.
    Garcia R.O., Oliveira S.R, arXiv:astro-ph/1602.02143v1 (2016)
  20. 20.
    B. Giacomazzo, L. Rezzolla, Class. Quantum Grav 24, S235 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Gómez, Mem. Soc. Astron. Italiana 79, 1157 (2008)ADSGoogle Scholar
  22. 22.
    P. Hardee, Y. Mizuno, K.-I. Nishikawa, Ap& SS 311, 281 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    M. Hedley, M.K. Yau, Mon. Wea. Rev. 116, 9 (1988)CrossRefGoogle Scholar
  24. 24.
    W. Hundsdorfer, J.G. Verwer, Numerical solution of time-dependent advection-diffusion-rection equations (Springer, New York, 2003)CrossRefMATHGoogle Scholar
  25. 25.
    A.L. King, et al., Nature Phys. 12, 772 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    S. Koide, K. Shibata, T. Kudoh, ApJ 522, 727 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    S. Koide, General relativistic plasmas around rotating black holes. Procedings IAU Symposium, p. 275 (2011)Google Scholar
  28. 28.
    S.S. Komissarov, et al., MNRAS. 394, 1182 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Komissarov, O. Porth, M. Lyutikov, Computational astrophysics and cosmology. 2, 9 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    R.J. Leveque. Finite volume methods for hyperbolic problems (Cambridge University Press, New York, 2002)CrossRefMATHGoogle Scholar
  31. 31.
    Massi, Mem. S.A. It. 75, 282 (2010)Google Scholar
  32. 32.
    I. Marti-Vidal, et al., Science 348, 311 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J.C. McKinney, R.D. Blandford, MNRAS 394, L126 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    A. Mignone, J.C. McKinney, MNRAS 378, 1118 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Mizuno Y., et al., arXiv:astro-ph/0609344v1 (2006)
  36. 36.
    P Mösta, et al., Class. Quantum Grav., 31 (2014)Google Scholar
  37. 37.
    H. Nessyahu, E. Tadmor, J. Comput. Phys. 87, 2 (1990)CrossRefGoogle Scholar
  38. 38.
    K.-I. Nishikawa, et al., ApJ 625, 60 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    W.H. Press, et al. Numerical recipes in Fortran 90 (Cambridge University Press, New York, 1997)Google Scholar
  40. 40.
    M.J.D. Powell, Approximation theory and methods (Cambridge University Press, Cambridge, 2001)Google Scholar
  41. 41.
    V. Schneider, et al., J. Comput. Phys. 105(1), 92 (1993)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Sol, G. Pelletier, E. Asseo, MNRAS. 237, 411 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    A. Tchekhovskoy, J.C. McKinney, R. Narayan, MNRAS 379, 469 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Tchekhovskoy A., Bromberg O, MNRAS, doi: 10.1093/mnrasl/slw064(2016)
  45. 45.
    J.W. Thomas, Numerical partial differential equations: finite difference methods (Springer, New York, 1995)CrossRefMATHGoogle Scholar
  46. 46.
    K.S. Thorne, R.H. Price, D.A. MacDonald, Black holes: the membrane paradigm (Yale University Press, New Haven, 1986), p. 1986Google Scholar
  47. 47.
    G. Tóth, J. Comput. Phys. 161(2), 605 (2000)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    R.M. Wald, Phys. Rev. D. 10, 16 (1974)Google Scholar
  49. 49.
    Walg S., et al., MNRAS, doi: 10.1093/mnras/stt823 (2013)
  50. 50.
    D.M. Worral, MNRAS. 380, 2 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  • Raphael de Oliveira Garcia
    • 1
  • Samuel Rocha de Oliveira
    • 1
  1. 1.Institute of Mathematics, Statistics and Scientific ComputingUniversity State of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations