Brazilian Journal of Physics

, Volume 47, Issue 2, pp 107–121 | Cite as

A Total Measure of Multi-Particle Quantum Correlations in Atomic Schrödinger Cat States

Atomic Physics
  • 75 Downloads

Abstract

We propose a total measure of multi-particle quantum correlation in a system of N two-level atoms (N qubits). We construct a parameter that encompasses all possible quantum correlations among N two-level atoms in arbitrary symmetric pure states and define its numerical value to be the total measure of the net atom-atom correlations. We use that parameter to quantify the total quantum correlations in atomic Schrödinger cat states, which are generated by the dispersive interaction in a cavity. We study the variation of the net amount of quantum correlation as we vary the number of atoms from N=2 to N=100 and obtain some interesting results. We also study the variation of the net correlation, for fixed interaction time, as we increase the number of atoms in the excited state of the initial system, and notice some interesting features. We also observe the behaviour of the net quantum correlation as we continuously increase the interaction time, for the general state of N two-level atoms in a dispersive cavity.

Keywords

Quantum correlation Atomic Schrödinger cat state 

References

  1. 1.
    J. Hald, J. L. Sørenson, C. Schori, E.S. Polzik, Phys. Rev. Lett. 83, 1319 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    B. Julsgaard, A. Kohzenkin, E.S. Polzik, Nautre. 413, 400 (2001)CrossRefGoogle Scholar
  3. 3.
    O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, I. Bloch, Nature. 425, 937 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Reid, Q.Y. He, P.D. Drummond, Front. Phys. 7(1), 72 (2012)CrossRefGoogle Scholar
  5. 5.
    D.A. Meyer, N.R. Wallach, J. Math. Phys. 43, 4273 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    T.C. Wei, P.M. Goldbart, Phys. Rev. A. 68, 042307 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M.B. Plenio, F.L. Semiao, New J. Phys. 7, 73 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R.N. Deb, Phys. Rev. A. 84, 032327 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R.N. Deb, Int. J. Theor. Phys. 55, 3289 (2016)CrossRefGoogle Scholar
  10. 10.
    For a review, see M. Horodecki, Quantum Inf. Comput. 1, 3. and references therein (2001)Google Scholar
  11. 11.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    K.G.H. Vollbercht, R. F. Werner, Phys. Rev. A. 64, 062307 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    B.M. Terhal, K.G.H. Vollbrecht, Phys. Rev. Lett. 85, 2625 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    M. Paternostro, W. Son, M.S. Kim, Phys. Rev. Lett. 92, 197901 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature. 409, 63 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    X. Wang, B.C. Sanders, Phys. Rev. A. 68, 012101 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    A.R. Usha Devi, M.S. Uma, R. Prabhu, Sudha, Int. J. Mod. Phys. B. 20, 1917 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M.S Uma, A.R Usha Devi, arXiv:quant-ph/0809.5147
  19. 19.
    J.K. Korbicz, J.I. Cirac, M. Lewenstein, Phys. Rev. Lett. 95, 120502 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J.K. Korbicz, O. Gühne, M. Lewenstein, H. Haeffner, C.F. Roos, R. Blatt, Phys. Rev. A. 74, 052319 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    G. Tóth, C. Knapp, O. Gühne, H.J. Briegel, Phys. Rev. A. 79, 042334 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89 (2011)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Gross, J. Phys. B: At. Mol. Opt. Phys. 45, 103001 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B Dalton, L Heaney, J Goold, B Garraway, M Reid, e-print arXiv:quant-ph/1506.06892
  25. 25.
    G. Vitagliano, P. Hyllus, I.L. Egusquiza, G. Tóth, Phys. Rev. Lett. 107, 240502 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Phys. Rev. A. 47, 3554 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A. 6, 2211 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    M. Kitagawa, M. Ueda, Phys. Rev. A. 47, 5138 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A. 50, 67 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    G.S. Agarwal, R.R. Puri, R.P. Singh, Phys. Rev. A. 56, 2249 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    R.N. Deb, N. Nayak, B. Dutta Roy, Eur. Phys. J. D. 33, 149 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson, P. Delsing, E. Solano, Phys. Rev. Lett. 113, 093602 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    S.G. Clark, A.S. Parkins, Phys. Rev. Lett. 90, 047905 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M. Jakob, Y. Abranyos, J.A. Bergou, Phys. Rev. A. 66, 022113 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2017

Authors and Affiliations

  1. 1.Department of PhysicsChandernagore CollegeChandernagore, HooghlyIndia

Personalised recommendations