Skip to main content

Non-Euclidean Ideal Spectrometry

Abstract

We describe the mathematical scheme for an anomaly-free ideal spectrometer, based on a 2−dimensional plane medium with conical regions of bounded slope. Moreover, the construction may be realised in many different configurations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. G.P. Alexander, R.D. Kamien, R.A. Mosna, Conformal smectics and their many metrics. Phys. Rev. E. 85, 050701(R) (2012)

    ADS  Article  Google Scholar 

  2. H.G. Beutler, The theory of the concave grating. J. Opt. Soc. Am. 35(5), 311–350 (1945)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. W. Cai, V. Shalaev, D.K. Paul, Optical metamaterials: fundamentals and applications. Phys Today. 63 (9), 57 (2010)

    Article  Google Scholar 

  4. F. Horst, W.M.J. Green, B.J. Offrein, Y.A. Vlasov, Silicon-on-insulator echelle grating WDM demultiplexers with two stigmatic points. IEEE Photon. Technol. Lett. 21(23), 1743–1745 (2009)

    ADS  Article  Google Scholar 

  5. Y. Huang, J. Ma, S. Chang, Q. Zhao, S.-T. Ho, Aberration corrected ultra-compact ultra-large angle curved grating multiplexer and demultiplexer on SOI platform, CWP3 (2008)

  6. J James. Spectrograph Design Fundamentals (Cambridge University Press, 2007)

  7. BBC Kyotoku, Applications of optical coherence tomography and advances into a photonic integrated device, Ph.D. Thesis (2011)

  8. U. Leonhardt, Optical conformal mapping. Science. 312(5781), 1777–1780 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. J. Li, J.B. Pendry, Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101(20), 203901 (2008)

    ADS  Article  Google Scholar 

  10. R.A. Mosna, D.A. Beller, R.D. Kamien, Breaking the rules for topological defects: smectic order on conical substrates. Phys. Rev. E. 86, 011707 (2012)

    ADS  Article  Google Scholar 

  11. R. Marz, C. Cremer, On the theory of planar spectrographs. J. Lightw. Technol. 10(12), 2017–2022 (1992)

    ADS  Article  Google Scholar 

  12. T. Namioka, Theory of the concave grating. J. Opt. Soc. Am. 49(5), 446–460 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  13. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science. 312(5781), 1780–1782 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. H.A. Rowland, On concave gratings for optical purposes. Philos. Mag. 16(99), 197–210 (1883)

    Article  Google Scholar 

  15. Z. Shi, S. He, A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer. IEEE J. Sel. Top. Quant. Electron. 8(6), 1179–1185 (2002)

    Article  Google Scholar 

  16. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58 (20), 2059 (1987)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Ricardo Mosna for the valuable ideas in the development of this project. HS is supported by the Fapesp research grant 2014/24727-0 and by the CNPq Productivity PQ2 grant 312390/2014-9. VS was supported by the Fapesp grant 2012/21923-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique N. Sá Earp.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sá Earp, H.N., Sicca, V. & Kyotoku, B.B.C. Non-Euclidean Ideal Spectrometry. Braz J Phys 46, 683–688 (2016). https://doi.org/10.1007/s13538-016-0452-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0452-1

Keywords

  • Integrated optics
  • Spectrometers
  • Geometric optical design