Skip to main content
Log in

Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The correction to the Coulomb repulsion between two electrons due to the exchange of a transverse photon, referred to as the Breit interaction, as well as the main quantum electrodynamics contributions to the atomic energies (self-energy and vacuum polarization), are calculated using the recently formulated relativistic screened hydrogenic model. Comparison with the results of multiconfiguration Dirac-Hartree-Fock calculations and experimental X-ray energies is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R.D. Cowan. The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981). (revised October 2001)

    Google Scholar 

  2. C. Froese Fischer, T. Brage, P. Jönsson. Computational Atomic Structure (IOP Publishing, Bristol and Philadelphia, 1997)

    MATH  Google Scholar 

  3. I.P. Grant. Relativistic Quantum Theory of Atoms and Molecules (Springer-Verlag, Berlin and Heidelberg, 2007)

    Book  Google Scholar 

  4. W.R. Johnson. Atomic Structure Theory (Springer-Verlag, Berlin and Heidelberg, 2007)

    Google Scholar 

  5. Z. Rudzikas. Theoretical Atomic Spectroscopy (Cambridge University Press, Cambridge, 1997). (revised 2007)

    Book  Google Scholar 

  6. The A. Kramida’s version for Windows are from http://www.nist.gov/pml/div684/grp01/Kramida.cfm

  7. M.F. Gu. AIP Conf. Proc. 730, 127–136 (2004)

    Article  ADS  Google Scholar 

  8. J.G. Rubiano, R. Florido, R. Rodríguez, J.M. Gil, P. Martel, E. Mínguez. J. Quant. Spectrosc. Radiat. Transfer. 149, 1–7 (2004)

    Google Scholar 

  9. G. Faussurier, C. Blancard, P. Renaudin. High Energ. Dens. Phys. 4, 114–123 (2008)

    Article  ADS  Google Scholar 

  10. L.M. Upcraft. High Energ. Dens. Phys. 6, 332–344 (2010)

    Article  ADS  Google Scholar 

  11. C.C. Smith. High Energ. Dens. Phys. 7, 1–5 (2011)

    Article  ADS  Google Scholar 

  12. D. Layzer. Ann. Phys. 8, 271–296 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Layzer, J. Bahcall. Ann. Phys. 17, 177 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Kregar. Phys. Scr. 29, 438 (1984)

    Article  ADS  Google Scholar 

  15. M. Kregar. Phys. Scr. 31, 246 (1985)

    Article  ADS  Google Scholar 

  16. M.A. Mendoza, J.G. Rubiano, J.M. Gil, R. Rodríguez, R. Florido, P. Martel, E. Mínguez. High Energ. Dens. Phys. 7, 169 (2011)

    Article  ADS  Google Scholar 

  17. F. Lanzini, H.O. Di Rocco. High Energ. Dens. Phys. 17, 240–247 (2015)

    Article  ADS  Google Scholar 

  18. H.O. Di Rocco. Braz. J. Phys. 22, 1–10 (1992)

    Google Scholar 

  19. H.O. Di Rocco. Il Nuovo Cim. D. 20, 131–140 (1998)

    Article  ADS  Google Scholar 

  20. J. Pomarico, D.I. Iriarte, H.O. Di Rocco. Braz. J. Phys. 35, 530–535 (2005)

    Article  ADS  Google Scholar 

  21. M. Mizushima, Quantum Mechanics of Atomic Structure and Atomic Spectra, W. A. Benjamin (1970)

  22. J.B. Mann, W.R. Johnson. Phys. Rev. A. 4, 41–51 (1971)

    Article  ADS  Google Scholar 

  23. M.G. Kozlov, S.G. Porsev, I.I. Tupitsyn, arXiv:physics/0004076v1 (2000)

  24. P.J. Mohr, G. Plunien, G. Soff. Phys. Rep. 293, 227–369 (1998)

    Article  ADS  Google Scholar 

  25. O. Yu. Andreev, L.N. Labzowsky, G. Plunien, D.A. Solovyev. Phys. Rep. 455, 135–246 (2008)

    Article  ADS  Google Scholar 

  26. L.J. Curtis. J. Phys. B: At. Mol. Phys. 18, L651–L656 (1985)

    Article  ADS  Google Scholar 

  27. J.D. Garcia, J.E. Mack. J. Opt. Soc. Am. 55, 654–85 (1965)

    Article  ADS  Google Scholar 

  28. G.W. Ericksson. J. Phys. Chem. Ref. Data. 6, 831–69 (1977)

    Article  ADS  Google Scholar 

  29. J.M. Harriman. Phys. Rev. 101, 594–598 (1956)

    Article  ADS  Google Scholar 

  30. V.A. Yerokhin, V.M. Shabaev, arXiv:1506.01885v1[physics.atom-ph] (2015)

  31. P.J. Mohr. Phys. Rev. A. 26, 2338–54 (1982)

    Article  ADS  Google Scholar 

  32. P.J. Mohr, B.N. Taylor. Rev. Mod. Phys. 72, 351 (2000)

    Article  ADS  Google Scholar 

  33. S. Kotochigova, P.J. Mohr, B.N. Taylor. Can. J. Phys. 80, 1373–1382 (2002)

    Article  ADS  Google Scholar 

  34. G. C. Rodrigues, P. Indelicato, J.P. Santos, P. Patté, F. Parente. Atom. Data Nucl. Data. 86, 117 (2004)

    Article  ADS  Google Scholar 

  35. G. Zschornack. Hanbook of X-Ray Data (Springer-Verlag, Berlin and Heidelberg, 2007)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Facultad de Ciencias Exactas, Universidad Nacional del Centro, and the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. We are also very grateful for the assistance Mariana Di Rocco has offered us in the translation of the paper into English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor O. Di Rocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Rocco, H.O., Lanzini, F. Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model. Braz J Phys 46, 175–183 (2016). https://doi.org/10.1007/s13538-015-0397-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0397-9

Keywords

Navigation