Elastic Constants of a Disc-Like Nematic Liquid Crystal: Pseudo-Molecular Approach


The pseudo-molecular method is employed to obtain analytical expressions for the elastic constants of an ensemble of anisotropic particles, in both disc-like and rod-like geometries. These particles interact via a phenomenological pair potential constructed from the non-spherical correction to the dispersion forces between two identical molecules. The molecular shape appears in the calculations of the elastic constants in two different cases. The first case considers a molecular volume of ellipsoidal shape continuously deformed from a positive (prolate spheroid, rod-like molecule) to large negative (oblate spheroid, disc-like molecule) values of a parameter describing some kind of eccentricity. The second one considers a molecular volume shape continuously deformed from a cylinder (calamitic molecule) to a plane disc by changing the ratio between the diameter of the cylinder and its long axis. The particular cases of Maier-Saupe and Nehring-Saupe interactions are obtained as simple limiting cases of the general pair potential interaction. These general results may be helpful to understand the limits of the pseudo-molecular method, and to understand the origin of elastic constants in discotic liquid crystals from a molecular perspective.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    It is assumed L = 0 in the nematic phase. In this case, there is no deformation in the ground state. L would be nonzero only in the cholesteric phase [1].

  2. 2.

    The value of C 1 will not be shown here, because when it is replaced in C i j k l , it yelds a vanishing contribution. In the following, we show that the elastic constants do not depend on C 1.

  3. 3.

    In ref. [28], Bates calls HLR potential a similar potential to (5), used in computational simulations. As (5) appears in [18], and there is a reference to it in the paper from Humphries, Luckhurst and Romano [19], it is convenient to call (5) HLR potential, too.


  1. 1.

    G. Barbero, L.R. Evangelista. An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific, Singapore, 2001)

    Google Scholar 

  2. 2.

    J. Nehring, M. Saupe, J. Chem. Phys. 54, 337 (1971)

    Article  ADS  Google Scholar 

  3. 3.

    J. Nehring, M. Saupe, J. Chem. Phys. 56, 5527 (1972)

    Article  ADS  Google Scholar 

  4. 4.

    G. Vertogen, Physica A. 117, 227 (1983)

    Article  ADS  Google Scholar 

  5. 5.

    G Vertogen, W.H. de Jeu. Thermotropic Liquid Crystals, Fundamentals, Springer Series in Chemical Physics, vol. 45 (Springer, Berlin, 1988)

    Book  Google Scholar 

  6. 6.

    G. Barbero, L.R. Evangelista, Phys. Rev. E. 56, 6189 (1997)

    Article  ADS  Google Scholar 

  7. 7.

    G. Barbero, R. Barberi, in Physics of Liquid Crystalline Materials, eds. I.C. Khoo, F. Simoni (Gordon and Breach, New York, 1993)

  8. 8.

    G. Barbero, L.R. Evangelista, M. Giocondo, S. Ponti, J. Phys. II(4), 1519 (1994)

    Google Scholar 

  9. 9.

    L.R. Evangelista, I. Hibler, H. Mukai, Phys. Rev. E. 58, 3245 (1998)

    Article  ADS  Google Scholar 

  10. 10.

    P.A. de Castro, J. Palangana, L. R. Evangelista, Phys. Rev. E. 60, 6195 (1999)

    Article  ADS  Google Scholar 

  11. 11.

    G. Barbero, L.R. Evangelista, S. Ponti, Phys. Rev. E. 54, 4442 (1996)

    Article  ADS  Google Scholar 

  12. 12.

    S. Ponti, F.C.M. Freire, J.C. Dias, L.R. Evangelista, Phys. Lett. A. 372, 6521 (2008)

    Article  ADS  MATH  Google Scholar 

  13. 13.

    P.S. Simonário, F.C. M. Freire, L.R. Evangelista, R.T. Teixeira-Souza, Phys. Lett. A. 378, 453 (2014)

    MathSciNet  Article  ADS  Google Scholar 

  14. 14.

    B.C. Kohin, J. Chem. Phys. 33, 882 (1960)

    Article  ADS  Google Scholar 

  15. 15.

    S. Romano, Phys. Lett. A. 305, 196 (2002)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  16. 16.

    S. Romano, Mod. Phys. Lett. B. 15, 137 (2001)

    Article  ADS  Google Scholar 

  17. 17.

    R. Hashim, S. Romano, Int. J. Mod. Phys. B. 13, 3879 (1999)

    Article  ADS  Google Scholar 

  18. 18.

    G.R. Luckhurst, S. Romano, Liq. Cryst. 26, 871 (1999)

    Article  Google Scholar 

  19. 19.

    R.L. Humphries, G.R. Luckhurst, S. Romano, Mol. Phys. 42, 1205 (1981)

    Article  ADS  Google Scholar 

  20. 20.

    D. Apreutesei, G. Mehl, Chem. Commun., 609 (2006)

  21. 21.

    G de Matteis, S. Romano, Phys. Rev. E. 80, 031702 (2009)

    Article  ADS  Google Scholar 

  22. 22.

    S. Romano, Int. J. Mod. Phys. B. 12, 2305 (1998)

    Article  ADS  Google Scholar 

  23. 23.

    S. Romano, Int. J. Mod. Phys. B. 14, 1195 (2000)

    MathSciNet  ADS  Google Scholar 

  24. 24.

    D. Hilbert, S. Cohn-Vossen. Geometry and the Imagination (Chelsea Publishing, New York, 1952)

    MATH  Google Scholar 

  25. 25.

    Y. Galerne, A.M. Figueiredo Neto, L. Liebert, Phys. Rev. A. 31, 4047 (1985)

    Article  ADS  Google Scholar 

  26. 26.

    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Tables (Dover, New York, 1965)

    Google Scholar 

  27. 27.

    K. Sokalski, TH.W. Ruijgrok, Phys. A. 113, 126–132 (1981)

    Article  Google Scholar 

  28. 28.

    M. Bates, Phys. Rev. E. 65, 041706 (2002)

    Article  ADS  Google Scholar 

Download references


The authors would like to thank L. R. Evangelista and R. T. Teixeira-Souza for comments and suggestions to improve the work, and the anonymous referee for suggesting a better redaction.

Author information



Corresponding author

Correspondence to P. S. Simonário.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonário, P.S., de Andrade, T.M. & Freire, F.C.M. Elastic Constants of a Disc-Like Nematic Liquid Crystal: Pseudo-Molecular Approach. Braz J Phys 46, 26–34 (2016). https://doi.org/10.1007/s13538-015-0375-2

Download citation


  • Elastic constants
  • Liquid crystals
  • Lattice models
  • Pseudo-molecular method