Abstract
The numerical generation of random quantum states (RQS) is an important procedure for investigations in quantum information science. Here, we review some methods that may be used for performing that task. We start by presenting a simple procedure for generating random state vectors, for which the main tool is the random sampling of unbiased discrete probability distributions (DPD). Afterwards, the creation of random density matrices is addressed. In this context, we first present the standard method, which consists in using the spectral decomposition of a quantum state for getting RQS from random DPDs and random unitary matrices. In the sequence, the Bloch vector parametrization method is described. This approach, despite being useful in several instances, is not in general convenient for RQS generation. In the last part of the article, we regard the overparametrized method (OPM) and the related Ginibre and Bures techniques. The OPM can be used to create random positive semidefinite matrices with unit trace from randomly produced general complex matrices in a simple way that is friendly for numerical implementations. We consider a physically relevant issue related to the possible domains that may be used for the real and imaginary parts of the elements of such general complex matrices. Subsequently, a too fast concentration of measure in the quantum state space that appears in this parametrization is noticed.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
P. Benioff, The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)
P. Benioff, Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581 (1982)
R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
R.P. Feynman, Quantum mechanical computers. Opt. News. 11, 11 (1985)
C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature. 404, 247 (2000)
T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O Brien, Quantum computers. Nature. 464, 45 (2010)
I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)
A. Ekert, R. Renner, The ultimate physical limits of privacy. Nature. 507, 443 (2014)
N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)
C. Jarzynski, Diverse phenomena, common themes. Nat. Phys. 11, 105 (2015)
M. Schuld, I. Sinayskiy, F. Petruccione, An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2015)
S. Trotzky, Y-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325 (2012)
J. Preskill, Quantum information and physics: some future directions. J. Mod. Opt. 47, 127 (2000)
S. Aaronson, How might quantum information transform our future? https://www.bigquestionsonline.com/content/how-might-quantum-information-transform-our-future (2014)
J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A. 300, 573 (2002)
R.V. Ramos, Numerical algorithms for use in quantum information. J. Comput. Phys. 192, 95 (2003)
D. Girolami, G. Adesso, Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A. 83, 052108 (2011)
J. Batle, M. Casas, A.R. Plastino, A. Plastino, Entanglement, mixedness, and q-entropies. Phys. Lett. A. 296, 251 (2002)
M. Roncaglia, A. Montorsi, M. Genovese, Bipartite entanglement of quantum states in a pair basis. Phys. Rev. A. 90, 062303 (2014)
S. Vinjanampathy, A.R.P. Rau, Quantum discord for qubit-qudit systems. J. Phys. A Math. Theor. 45, 095303 (2012)
X.-M. Lu, J. Ma, Z. Xi, X. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A. 83, 012327 (2011)
F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, The optimal bound of quantum erasure with limited means. arXiv:2313.1410
F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, Recovering full coherence in a qubit by measuring half of its environment. arXiv:1502.07030
W.K. Wootters, Random quantum states. Found. Phys. 20, 1365 (1990)
M.J.W. Hall, Random quantum correlations, density operator distributions. Phys. Lett. A. 242, 123 (1998)
I. Nechita, Asymptotics of random density matrices. Ann. Henri Poincaré. 8, 1521 (2007)
C. Nadal, S.N. Majumdar, M. Vergassola, Statistical distribution of quantum entanglement for a random bipartite state. J. Stat. Phys. 142, 403 (2011)
A. Hamma, S. Santra, P. Zanardi, Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012)
S. Agarwal, S.M.H. Rafsanjani, Maximizing genuine multipartite entanglement of n mixed qubits. Int. J. Quant. Inf. 11, 1350043 (2013)
F.D. Cunden, P. Facchi, G. Florio, Polarized ensembles of random pure states. J. Phys A: Math. Theor. 46, 315306 (2013)
M.B. Hastings, Superadditivity of communication capacity using entangled inputs. arXiv:0809.3972
E.T. Jaynes. Theory Probability: The Logic of Science (Cambridge University Press, New York, 2003)
D.P. Landau, K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)
T.M. Cover, J.A. Thomas. Elements of Information Theory (John Wiley, New Jersey, 2006)
M.A. Carlton, J.L. Devore. Probability with Applications in Engineering, Science, and Technology (Springer, New York , 2014)
E. Brüning, H. Mäkelä, A. Messina, F. Petruccione, Parametrizations of density matrices. J. Mod. Opt. 59, 1 (2012)
T. Radtke, S. Fritzsche, Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions. Comput. Phys. Commun. 179, 647 (2008)
V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A. 57, 1619 (1998)
J. Maziero, Generating pseudo-random discrete probability distributions. Braz. J. Phys. 45, 377 (2015)
M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge , 2000)
M.M. Wilde. Quantum Information Theory (Cambridge University Press, Cambridge, 2013)
G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)
K. życzkowski, M. Kuś, Random unitary matrices. J. Phys. A: Math. Gen. 27, 4235 (1994)
J. Emerson. Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Pseudo-random unitary operators for quantum information processing. Science. 302, 2098 (2003)
J. Shang, Y.-L. Seah, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)
Y.-L. Seah, J. Shang, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. II. New J. Phys. 17, 043018 (2015)
J. Maziero, Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)
L. Aolita, F. de Melo, L. Davidovich, Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)
L.C. Céleri, J. Maziero, R.M. Serra, Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quant. Inf. 9, 1837 (2011)
T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys Rev. Lett. 113, 140401 (2014)
D. Girolami, Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)
M. Matsumoto, T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model. Comput. Sim. 8, 3 (1998)
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK Users’ Guide, 3rd (Society for Industrial and Applied Mathematics, Philadelphia, 1999)
J.A. Miszczak, Generating and using random quantum states in Mathematica. Comput. Phys. Commun. 183, 118 (2012)
M. Ledoux, The concentration of measure phenomenon. Mathematical Surveys and Monographs of the American Mathematical Society. 89 (2001)
P. Hayden, in Concentration of measure effects in quantum information. Proceedings of Symposia in Applied Mathematics, Vol. 68, (2010), p. 3
K. życzkowski, K.A. Penson, I. Nechita, B. Collins, Generating random density matrices. J. Math. Phys. 52, 062201 (2011)
I. Bengtsson, K. życzkowski. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2007)
V. Al Osipov, H.-J. Sommers, K. życzkowski, Random Bures mixed states and the distribution of their purity. J. Phys. A: Math. Theor. 43, 055302 (2010)
Acknowledgments
This work was supported by the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), under processes 441875/2014-9 and 303496/2014-2, Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), under process 2008/57856-6, and Coordenação de Desenvolvimento de Pessoal de Nível Superior (CAPES), under process 6531/2014-08. I gratefully acknowledge the hospitality of the Laser Spectroscopy Group at the Universidad de la República, Uruguay, where this article was completed.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maziero, J. Random Sampling of Quantum States: a Survey of Methods. Braz J Phys 45, 575–583 (2015). https://doi.org/10.1007/s13538-015-0367-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13538-015-0367-2