Skip to main content
Log in

Random Sampling of Quantum States: a Survey of Methods

And Some Issues Regarding the Overparametrized Method

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The numerical generation of random quantum states (RQS) is an important procedure for investigations in quantum information science. Here, we review some methods that may be used for performing that task. We start by presenting a simple procedure for generating random state vectors, for which the main tool is the random sampling of unbiased discrete probability distributions (DPD). Afterwards, the creation of random density matrices is addressed. In this context, we first present the standard method, which consists in using the spectral decomposition of a quantum state for getting RQS from random DPDs and random unitary matrices. In the sequence, the Bloch vector parametrization method is described. This approach, despite being useful in several instances, is not in general convenient for RQS generation. In the last part of the article, we regard the overparametrized method (OPM) and the related Ginibre and Bures techniques. The OPM can be used to create random positive semidefinite matrices with unit trace from randomly produced general complex matrices in a simple way that is friendly for numerical implementations. We consider a physically relevant issue related to the possible domains that may be used for the real and imaginary parts of the elements of such general complex matrices. Subsequently, a too fast concentration of measure in the quantum state space that appears in this parametrization is noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Benioff, The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Benioff, Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  4. R.P. Feynman, Quantum mechanical computers. Opt. News. 11, 11 (1985)

    Article  Google Scholar 

  5. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature. 404, 247 (2000)

    Article  ADS  Google Scholar 

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O Brien, Quantum computers. Nature. 464, 45 (2010)

    Article  ADS  Google Scholar 

  7. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  8. A. Ekert, R. Renner, The ultimate physical limits of privacy. Nature. 507, 443 (2014)

    Article  ADS  Google Scholar 

  9. N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  10. C. Jarzynski, Diverse phenomena, common themes. Nat. Phys. 11, 105 (2015)

    Article  Google Scholar 

  11. M. Schuld, I. Sinayskiy, F. Petruccione, An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2015)

    Article  ADS  Google Scholar 

  12. S. Trotzky, Y-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325 (2012)

    Article  Google Scholar 

  13. J. Preskill, Quantum information and physics: some future directions. J. Mod. Opt. 47, 127 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Aaronson, How might quantum information transform our future? https://www.bigquestionsonline.com/content/how-might-quantum-information-transform-our-future (2014)

  15. J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A. 300, 573 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. R.V. Ramos, Numerical algorithms for use in quantum information. J. Comput. Phys. 192, 95 (2003)

    Article  MATH  ADS  Google Scholar 

  17. D. Girolami, G. Adesso, Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A. 83, 052108 (2011)

    Article  ADS  Google Scholar 

  18. J. Batle, M. Casas, A.R. Plastino, A. Plastino, Entanglement, mixedness, and q-entropies. Phys. Lett. A. 296, 251 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. M. Roncaglia, A. Montorsi, M. Genovese, Bipartite entanglement of quantum states in a pair basis. Phys. Rev. A. 90, 062303 (2014)

    Article  ADS  Google Scholar 

  20. S. Vinjanampathy, A.R.P. Rau, Quantum discord for qubit-qudit systems. J. Phys. A Math. Theor. 45, 095303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  21. X.-M. Lu, J. Ma, Z. Xi, X. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A. 83, 012327 (2011)

    Article  ADS  Google Scholar 

  22. F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, The optimal bound of quantum erasure with limited means. arXiv:2313.1410

  23. F.M. Miatto, K. Piché, T. Brougham, R.W Boyd, Recovering full coherence in a qubit by measuring half of its environment. arXiv:1502.07030

  24. W.K. Wootters, Random quantum states. Found. Phys. 20, 1365 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.J.W. Hall, Random quantum correlations, density operator distributions. Phys. Lett. A. 242, 123 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. I. Nechita, Asymptotics of random density matrices. Ann. Henri Poincaré. 8, 1521 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. C. Nadal, S.N. Majumdar, M. Vergassola, Statistical distribution of quantum entanglement for a random bipartite state. J. Stat. Phys. 142, 403 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. A. Hamma, S. Santra, P. Zanardi, Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012)

    Article  ADS  Google Scholar 

  29. S. Agarwal, S.M.H. Rafsanjani, Maximizing genuine multipartite entanglement of n mixed qubits. Int. J. Quant. Inf. 11, 1350043 (2013)

    Article  Google Scholar 

  30. F.D. Cunden, P. Facchi, G. Florio, Polarized ensembles of random pure states. J. Phys A: Math. Theor. 46, 315306 (2013)

    Article  MathSciNet  Google Scholar 

  31. M.B. Hastings, Superadditivity of communication capacity using entangled inputs. arXiv:0809.3972

  32. E.T. Jaynes. Theory Probability: The Logic of Science (Cambridge University Press, New York, 2003)

    Book  Google Scholar 

  33. D.P. Landau, K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  34. T.M. Cover, J.A. Thomas. Elements of Information Theory (John Wiley, New Jersey, 2006)

    MATH  Google Scholar 

  35. M.A. Carlton, J.L. Devore. Probability with Applications in Engineering, Science, and Technology (Springer, New York , 2014)

    Book  MATH  Google Scholar 

  36. E. Brüning, H. Mäkelä, A. Messina, F. Petruccione, Parametrizations of density matrices. J. Mod. Opt. 59, 1 (2012)

    Article  ADS  Google Scholar 

  37. T. Radtke, S. Fritzsche, Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions. Comput. Phys. Commun. 179, 647 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A. 57, 1619 (1998)

    Article  ADS  Google Scholar 

  39. J. Maziero, Generating pseudo-random discrete probability distributions. Braz. J. Phys. 45, 377 (2015)

    Article  ADS  Google Scholar 

  40. M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge , 2000)

    MATH  Google Scholar 

  41. M.M. Wilde. Quantum Information Theory (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  42. G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. K. życzkowski, M. Kuś, Random unitary matrices. J. Phys. A: Math. Gen. 27, 4235 (1994)

    Article  ADS  Google Scholar 

  44. J. Emerson. Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Pseudo-random unitary operators for quantum information processing. Science. 302, 2098 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. J. Shang, Y.-L. Seah, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)

    Article  ADS  Google Scholar 

  46. Y.-L. Seah, J. Shang, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. II. New J. Phys. 17, 043018 (2015)

    Article  ADS  Google Scholar 

  47. J. Maziero, Distribution of mutual information in multipartite states. Braz. J. Phys. 44, 194 (2014)

    Article  ADS  Google Scholar 

  48. L. Aolita, F. de Melo, L. Davidovich, Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  49. L.C. Céleri, J. Maziero, R.M. Serra, Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quant. Inf. 9, 1837 (2011)

    Article  MATH  Google Scholar 

  50. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  51. D. Girolami, Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  52. F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  53. M. Matsumoto, T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model. Comput. Sim. 8, 3 (1998)

    Article  MATH  Google Scholar 

  54. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen. LAPACK Users’ Guide, 3rd (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Book  Google Scholar 

  55. J.A. Miszczak, Generating and using random quantum states in Mathematica. Comput. Phys. Commun. 183, 118 (2012)

    Article  MATH  ADS  Google Scholar 

  56. M. Ledoux, The concentration of measure phenomenon. Mathematical Surveys and Monographs of the American Mathematical Society. 89 (2001)

  57. P. Hayden, in Concentration of measure effects in quantum information. Proceedings of Symposia in Applied Mathematics, Vol. 68, (2010), p. 3

  58. K. życzkowski, K.A. Penson, I. Nechita, B. Collins, Generating random density matrices. J. Math. Phys. 52, 062201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  59. I. Bengtsson, K. życzkowski. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  60. V. Al Osipov, H.-J. Sommers, K. życzkowski, Random Bures mixed states and the distribution of their purity. J. Phys. A: Math. Theor. 43, 055302 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), under processes 441875/2014-9 and 303496/2014-2, Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), under process 2008/57856-6, and Coordenação de Desenvolvimento de Pessoal de Nível Superior (CAPES), under process 6531/2014-08. I gratefully acknowledge the hospitality of the Laser Spectroscopy Group at the Universidad de la República, Uruguay, where this article was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziero, J. Random Sampling of Quantum States: a Survey of Methods. Braz J Phys 45, 575–583 (2015). https://doi.org/10.1007/s13538-015-0367-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0367-2

Keywords

Navigation