Skip to main content

On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity

Abstract

In this paper, the thermal buckling characteristics of armchair single-walled carbon nanotube (SWCNT) embedded in a one-parameter elastic medium are investigated using a new nonlocal first-order shear deformation theory (NNFSDT). The present model is able to consider the small-scale effect as well as the transverse shear deformation effects of nanotubes. The equivalent Young’s modulus and shear modulus for armchair SWCNT are obtained by employing the energy-equivalent model. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. The results illustrated in this work can provide a significant guidance for the investigation and design of the novel generation of nanodevices that make use of the thermal buckling characteristics of embedded SWCNT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. 2.

    B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996)

    Article  ADS  Google Scholar 

  3. 3.

    O. Lourie, D.M. Cox, H.D. Wagner, Phys. Rev. Lett. 81, 1638 (1998)

    Article  ADS  Google Scholar 

  4. 4.

    C.F. Cornwell, L.T. Wille, Solid Stat. Comm. 101, 555 (1997)

    Article  ADS  Google Scholar 

  5. 5.

    Q. Wang, V.K. Varadan, Smar. Mater. Struct. 14, 281 (2005)

    Article  ADS  Google Scholar 

  6. 6.

    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  7. 7.

    W.H. Duan, C.M. Wang, Y.Y. Zhang, J. Appl. Phys. 101, 024305 (2007)

    Article  ADS  Google Scholar 

  8. 8.

    B. Arash, R. Ansari, Phys. E. 42, 2058–2064 (2010)

    Article  Google Scholar 

  9. 9.

    L.J. Sudak, J. Appl. Phys. 94, 7281 (2003)

    Article  ADS  Google Scholar 

  10. 10.

    M.R. Nami, M. Janghorban, Braz. J. Phys. 44, 361–367 (2014)

    Article  ADS  Google Scholar 

  11. 11.

    Q. Wang, V.K. Varadan, S.T. Quek, Phys. Lett. A 357, 130 (2006)

    Article  ADS  Google Scholar 

  12. 12.

    J.N. Reddy, Int. J. Engg. Sci. 45, 288 (2007)

    Article  MATH  Google Scholar 

  13. 13.

    K. Amara, A. Tounsi, E.A. Adda-Bedia, Applied Mathematical Modeling 34(12), 3933 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    A. Tounsi, S. Benguediab, E.A. Adda Bedia, A. Semmah, M. Zidour, Advances in Nano Research 1(1), 1 (2013)

    Article  Google Scholar 

  15. 15.

    A. Tounsi, A. Semmah, A.A. Bousahla, J. Nanomechanics Micromech. (ASCE) 3, 37 (2013)

    Article  Google Scholar 

  16. 16.

    H.M. Berrabah, A. Tounsi, A. Semmah, E.A. Adda Bedia, Struct. Eng. Mech. 48(3), 351 (2013)

    Article  Google Scholar 

  17. 17.

    M. Bouremana, M.S.A. Houari, A. Tounsi, A. Kaci, E.A. Adda Bedia, Steel. Compos. Struct. 15(5), 467 (2013)

    Article  Google Scholar 

  18. 18.

    Y. Wu, X. Zhang, A.Y.T. Leung, W. Zhong, Thin-Walled Struct. 44, 667–676 (2006)

    Article  Google Scholar 

  19. 19.

    M. Naceri, M. Zidour, A. Semmah, M.S.A. Houari, A. Benzair, A. Tounsi, J. Appl. Phys. 110, 124322 (2011)

    Article  ADS  Google Scholar 

  20. 20.

    L. Boumia, M. Zidour, A. Benzair, A. Tounsi, Phys. E. 59, 186–191 (2014)

    Article  Google Scholar 

  21. 21.

    H. Heireche, A. Tounsi, A. Benzair, E.A. Adda Bedia, Phys. E. 40, 2791–2799 (2008)

    Article  Google Scholar 

  22. 22.

    B. Arash, Q. Wang, Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  23. 23.

    Q. Wang, J. Appl. Phys. 98, 124301 (2005)

    Article  ADS  Google Scholar 

  24. 24.

    Y. Tokio, Synth. Met. 70, 1511–8 (1995)

    Article  Google Scholar 

  25. 25.

    L.F. Wang, H.Y. Hu, Phys. Rev. B 71, 195412 (2005)

    Article  ADS  Google Scholar 

  26. 26.

    V.M. Harik, Solid State Commun. 120, 331–335 (2001)

    Article  ADS  Google Scholar 

  27. 27.

    V.M. Harik, Comput. Mater. Sci. 24, 328–342 (2002)

    Article  Google Scholar 

  28. 28.

    N. Silvestre, C.M. Wang, Y.Y. Zhang, Y. Xiang, Compos. Struct. 93, 1683–1691 (2011)

    Article  Google Scholar 

  29. 29.

    C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, J. Phys. D. Appl. Phys. 39, 3904–3909 (2006)

    Article  ADS  Google Scholar 

  30. 30.

    B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  ADS  Google Scholar 

  31. 31.

    W.D. Cornell, P. Cieplak, C.I. Bayly et al., J. Am. Chem. Soc. 117, 5179–97 (1995)

    Article  Google Scholar 

  32. 32.

    X.H. Yao, Q. Han, J. Eng. Mater. Technol. 128, 419 (2006)

    Article  Google Scholar 

  33. 33.

    M.J. Hao, X.M. Guo, Q. Wang, Eur. J. Mech. A. Solids 29, 49 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. 34.

    B.I. Yakobson, P.H. Avour, in: Carbon Nanotubes, Chapt. 9, ed. By M.S. Dresselhaus, P.H. Avouris, (Springer Verlag, Berlin-Heidelberg 2001) p. 287

  35. 35.

    V.N. Popov, V.E. Van Doren, M. Balkanski, Phys. Rev. B 61, 3078 (2000)

    Article  ADS  Google Scholar 

  36. 36.

    C.R. Cowper, J. Appl. Mech. 33, 335 (1996)

    Article  Google Scholar 

  37. 37.

    B. Bouderba, M.S.A. Houari, A. Tounsi, Steel Compos Struc 14(1), 85–104 (2013)

    Article  Google Scholar 

  38. 38.

    M. Ait Amar Meziane, H.H. Abdelaziz, A. Tounsi, J. Sandw. Struct. Mater. 16(3), 293–318 (2014)

    Article  Google Scholar 

  39. 39.

    Y. Khalfi, M.S.A. Houari, A. Tounsi, Int. J. Comput. Methods 11(5), 135007 (2014)

    Article  MathSciNet  Google Scholar 

  40. 40.

    K. Nedri, N. El Meiche, A. Tounsi, Mech. Compos. Mater. 49(6), 641–650 (2014)

    Article  Google Scholar 

  41. 41.

    M. Zidi, A. Tounsi, M.S.A. Houari, E.A. Adda Bedia, O. Anwar Bég, Aerosp. Sci. Technol. 34, 24–34 (2014)

    Article  Google Scholar 

  42. 42.

    A. Tounsi, M.S.A. Houari, S. Benyoucef, E.A. Adda Bedia, Aerosp. Sci. Technol. 24, 209–220 (2013)

    Article  Google Scholar 

  43. 43.

    A.A. Bousahla, M.S.A. Houari, A. Tounsi, E.A. Adda Bedia, Int. J. Comput. Methods 11(6), 1350082 (2014)

    Article  MathSciNet  Google Scholar 

  44. 44.

    A. Mahi, E.A. Adda Bedia, A. Tounsi, Applied Mathematical Modelling, (2015), in press.

Download references

Acknowledgments

This research was supported by the Algerian National Thematic Agency of Research in Science and Technology (ATRST) and University of Sidi Bel Abbes (UDL SBA) in Algeria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelouahed Tounsi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bedia, W.A., Benzair, A., Semmah, A. et al. On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity. Braz J Phys 45, 225–233 (2015). https://doi.org/10.1007/s13538-015-0306-2

Download citation

Keywords

  • Carbon nanotube
  • Critical buckling temperature
  • Scale effects