Skip to main content
Log in

Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we have analyzed the experimental pressure-temperature behavior at the isotropic-nematic phase transition of the liquid crystals PAP, 5CB, MBBA, and EBBA at 1 atm by using the HERSW Convex Peg model in conjunction with the IPCM model. We have calculated the molecular volume values for the hard and attractive cores from theoretical quantum calculations at the PM3, PM6, B3LYP/6-311++G(d,p)//PM6, and M06/6-311++G(d,p)//PM6 levels of theory. The results suggest that the best theoretical prediction of the experimental pressure-temperature behavior is obtained when the molecular volume is evaluated at the DFT level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Chandrasekhar, Liquid Crystals, second edition, Cambridge University Press, pp. 1-16 (1992)

  2. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  3. M.P. Allen, G.T. Evans, D. Frenkel, B.M. Mulder, Adv. Chem. Phys. 86, 1 (1993)

    Google Scholar 

  4. G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)

    Article  ADS  Google Scholar 

  5. Y.C. Lin, D.O. Dumcenco, Y.S. Huang, K. Suenaga, Nat. Nanotechnol. 9, 391 (2014)

    Article  ADS  Google Scholar 

  6. A. Chanishvili, G. Chilaya, G. Petriashvili, D. Sikharulidze, Mol. Cryst. Liq. Cryst. 409, 209 (2004)

    Article  Google Scholar 

  7. A. Chanishvili, G. Chilaya, G. Petriashvili, P.J. Collings, Phys. Rev. E 71, 051705 (2005)

    Article  ADS  Google Scholar 

  8. M. Johri et al., Phys. 76, 621 (2011)

    Google Scholar 

  9. J. Pavlin et al., Eurasia J. Math. Sci. &Tech. Ed. 7, 173 (2011)

    Google Scholar 

  10. G.R. Van Hecke, Phase transitions and the effects of pressure, Thermodynamics, Physical Properties of Liquid Crystals: Nematics, EMIS Datareviews Series; No. 25, (INSPEC, the Institution of Electrical Engineers, London, United Kingdom), pp 265-276 (2001)

  11. O.M. Abdul-Aziz, J.R. Abdul-Karim, A. Mohammed, A.O. Karar, Calculation of refractive index for (MBBA) liquid crystal material at different temperatures. J Babylon Univ, Pure. Appl. Sci. 21(5), 1764–1768 (2013)

    Google Scholar 

  12. S. Khandekar, KS Wills. Liquid Crystal Microscopy, In: Microelectronic Failures Analysis Desk Reference, Fourth Ed., EDFAS, pp 739-44 (2002)

  13. V.M. Popov, A.S. Klimenko, A.P. Pokanevich, I. Gavrilyuk, A.P. Pokanevich, Mikroelektronika 36(6), 446 (2007)

    Google Scholar 

  14. G. Biresaw, Tribology and the Liquid-crystalline State: Developed from a Symposium Sponsored by the Division of Colloid and Surface Chemistry at the 198th National Meeting of the American Chemical Society, Miami Beach, Florida, September 10-15. J. Cognard. Lubrication with Liquid Crystal, Chapter 1, pp 1-47 (1989)

  15. E. Kuss, Mol. Cryst. Liq. Cryst. 47, 71 (1978)

    Article  Google Scholar 

  16. J. Deschamps, J.P. Martin Trusler, G. Jackson, J. Chem. Phys. B 112, 3918 (2008)

    Article  Google Scholar 

  17. W. Maier, A. Saupe, Z. Naturf. 13, 564 (1958)

    ADS  Google Scholar 

  18. H. Kimura, J. Physics. Soc. Jpn. 36, 1280 (1974)

    Article  ADS  Google Scholar 

  19. J.D. Parsons, Phys. Rev. A. 19, 1225 (1979)

    Article  ADS  Google Scholar 

  20. S.D. Lee, J. Chem. Phys. 87, 4972 (1987)

    Article  ADS  Google Scholar 

  21. S.D. Lee, J. Chem. Phys. 89, 7036 (1988)

    Article  ADS  Google Scholar 

  22. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  23. L.V. Yelash, T. Kraska, E.A. Muller, N.F. Carnahan, Phys. Chem. Chem. Phys. 1, 4919 (1999)

    Article  Google Scholar 

  24. E. García-Sánchez et al., J. Chem. Phys. A. 106, 10340 (2002)

    Article  Google Scholar 

  25. A. Martínez-Richa, E. García-Sánchez, D.C. Williamson, Rev. Mex. Ing. Quim. 2, 35 (2003)

    Google Scholar 

  26. E. García-Sánchez, Rev. Méx. Fís. 53, 179 (2007)

    Google Scholar 

  27. E. García-Sánchez, F.J. Martínez, L.H. Mendoza-Huizar, Información Tecnológica. 20, 39 (2009)

    Article  Google Scholar 

  28. A.E. González-Cabrera, E. García-Sánchez, L.H. Mendoza-Huizar, J. Mol. Liq. 149, 22 (2009)

    Article  Google Scholar 

  29. E. García-Sánchez, J.M. Cervantes-Viramontes, C.H. Castañeda-Ramírez, Ing. Inv. Tec. 2, 157 (2011)

    Google Scholar 

  30. M.A. Cotter, J. Chem. Phys. 66, 4710 (1977)

    Article  ADS  Google Scholar 

  31. W.M. Gelbart, B.A. Baron, J. Chem. Phys. 66, 207 (1977)

    Article  ADS  Google Scholar 

  32. W.M. Gelbart, B. Barboy, Acc. Chem. Res. 13, 290 (1980)

    Article  Google Scholar 

  33. P.G. Bolhuis, A. Stroobants, D. Frenkel, H.N.W. Lekkerkerker, J. Chem. Phys. 107, 1551 (1997)

    Article  ADS  Google Scholar 

  34. D.C. Williamson, Mol. Phys. 95, 319 (1998)

    Article  ADS  Google Scholar 

  35. P.I.C. Teixeira, Mol. Phys. 96, 805 (1999)

    Article  ADS  Google Scholar 

  36. D.C. Williamson, F. Del Rio, J. Phys. Chem. B. 109, 4675 (1998)

    Article  Google Scholar 

  37. D.C. Williamson, Y. Guevara, J. Phys. Chem. B 103, 7522 (1999)

    Article  Google Scholar 

  38. S.C. McGrother, A. Gil-Villegas, G. Jackson, J. Phys. Condens. Matter 8, 9649 (1996)

    Article  ADS  Google Scholar 

  39. B. Groh, S. Dietrich, Phys. Rev. E 55, 2892 (1997)

    Article  ADS  Google Scholar 

  40. A. Gil-Villegas, S.C. McGrother, G. Jackson, Chem. Phys. Lett. 269, 441 (1997)

    Article  ADS  Google Scholar 

  41. S.C. McGrother, A. Gil-Villegas, G. Jackson, Mol. Phys. 95, 657 (1998)

    Article  ADS  Google Scholar 

  42. S. Varga, I. Szalai, J. Liszi, G. Jackson, J. Chem. Phys. 116, 9107 (2002)

    Article  ADS  Google Scholar 

  43. D.C. Williamson, N.A. Thacker, S.R. Williamson, Phys. Rev. E. 71, 021702 (2005)

    Article  ADS  Google Scholar 

  44. S. Varga, G. Jackson, Mol. Phys. 104, 3681 (2006)

    Article  ADS  Google Scholar 

  45. H.H. Wensink, G. Jackson, J. Chem. Phys. 130, 234911 (2009)

    Article  ADS  Google Scholar 

  46. H.H. Wensink, G. Jackson, J. Phys.: Condens. Matter 23, 194107 (2011)

    ADS  Google Scholar 

  47. J.B. Foresman et al., J. Phys. Chem. 100, 16098 (1996)

    Article  Google Scholar 

  48. J.J.P. Stewart, J. Comp. Chem. 10, 209 (1989)

    Article  Google Scholar 

  49. J.J.P. Stewart, J. Mol. Model. 13, 1173 (2007)

    Article  Google Scholar 

  50. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936)

    Article  Google Scholar 

  51. S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981)

    Article  ADS  Google Scholar 

  52. J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994)

    Article  Google Scholar 

  53. Y. Shao et al., Phys. Chem. Chem. Phys. 8, 3172 (2006)

    Article  Google Scholar 

  54. Gaussian 09, Revision C.01, MJ Frisch et al. Gaussian, Inc., Wallingford CT, 2009.

  55. Y. Zhao, D.G. Truhlar, Theor. Chem. Account. 120, 215 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

EGS and LHMH gratefully acknowledge financial support from the Universidad Autónoma de Zacatecas and from the Universidad Autónoma del Estado de Hidalgo, respectively. LHMH wishes to thank the financial support from CONACYT (project INFR-2014-227999) and National Laboratory for the Characterization of Physicochemical Properties and Molecular Structure, (LACAPFEM) for providing supercomputing time. We are also grateful to the reviewers of the manuscript for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo García-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Sánchez, E., Mendoza-Huizar, L.H., Ramírez-García, U. et al. Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA. Braz J Phys 45, 258–263 (2015). https://doi.org/10.1007/s13538-014-0295-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0295-6

Keywords

Navigation