Skip to main content
Log in

Electrostatic Shock Structures in Nonextensive Plasma with Two Distinct Temperature Electrons

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of the dust-acoustic shock waves in a dusty plasma containing negatively charged mobile dust, nonextensive electrons with two distinct temperatures, and Maxwellian ions have been investigated by deriving the Burgers equation. The normal mode analysis is used to examine the linear properties of dust-acoustic (DA) waves. It has been observed that the properties of the DA shock waves (SHWs) are significantly modified by nonextensivity of the electrons, electron temperature ratios, and the respective number densities of two species of electrons. A critical value of nonextensivity is found for which shock structures transit from positive to negative potential. The shock waves with positive and negative potential are obtained depending on the plasma parameters. The entailments of our results may be useful to understand the structures and the characteristics of DASHWs both in laboratory and astrophysical plasma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  2. D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  3. M. Horanyi, Annu. Rev. Astron. Astrophys. 34, 383 (1996)

    Article  ADS  Google Scholar 

  4. F. Verheest. Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000)

    Book  Google Scholar 

  5. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics, Institute of Physics, Bristol (2002)

  6. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  7. A. Barkan, R.L. Merlino, N. D’Angelo, Phys. Plasmas. 2, 3563 (1995)

    Article  ADS  Google Scholar 

  8. V.E. Fortov, O.F. Petrov, V.I. Molotkov, M.Y. Poustylnik, V.M. Torchinsky, A.G. Khrapak, A.V. Chernyshev, Phys. Rev. E. 69, 016402 (2004)

    Article  ADS  Google Scholar 

  9. J.B. Pieper, J. Goree, Phys. Rev. Lett. 77, 3137 (1996)

    Article  ADS  Google Scholar 

  10. R.L. Merlino, J.A. Goree, Phys. Today. 57, 32 (2004)

    Article  Google Scholar 

  11. A.A. Mamun, P.K. Shukla, Phys. Lett. A 290, 173 (2001)

    Article  ADS  MATH  Google Scholar 

  12. A.A. Mamun, Lett, Phys. A. 372, 884 (2008)

    Article  MATH  Google Scholar 

  13. P.K. Shukla, Phys. Plasmas. 10, 1619 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.M. Mirza, S. Mahmood, N. Jehan, N. Ali, Phys. Scr. 75, 755 (2007)

    Article  ADS  MATH  Google Scholar 

  15. P. Bandyopadhyay, G. Prasad, A. Sen, P.K. Kaw, Phys. Rev. Lett. 101, 065006 (2008)

    Article  ADS  Google Scholar 

  16. T.E. Sheridan, V. Nosenko, J. Goree, Phys. Plasmas. 15, 073703 (2008)

    Article  ADS  Google Scholar 

  17. C.T. Liao, L.W. Teng, C.Y. Tsai, C.W. Io, I. Lin, Phys. Rev. Lett. 100, 185004 (2008)

    Article  ADS  Google Scholar 

  18. C. Tsallis. J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. J.A.S. Lima, R. Silva, J. Santos, Phys. Rev. E. 61, 3260 (2000)

    Article  ADS  Google Scholar 

  20. A. Lavagno, D. Pigato, Euro. Phys. J. A. 47, 52 (2011)

    Article  ADS  Google Scholar 

  21. A.R. Plastino, A. Plastino, Phys. Lett. A. 174, 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Gervino, A. Lavagno, D. Pigato, Central Euro. J. Phys. 10, 594 (2012)

    Article  ADS  Google Scholar 

  23. C. Feron, J. Hjorth, Phys. Rev. E 77, 022106 (2008)

  24. M. Emamuddin, S. Yasmin, M. Asaduzzaman, A.A. Mamun, Phys. Plasmas 20 083708 (2013)

  25. S. Yasmin, M. Asaduzzaman, A.A. Mamun, Astrophys. Space. Sci. 343, 245 (2013)

    Article  ADS  MATH  Google Scholar 

  26. M. Ferdousi, S. Yasmin, S. Ashraf, A.A. Mamun, Astrophys Space. Sci. 352, 579 (2014)

    Article  ADS  Google Scholar 

  27. A.A. Mamun, P.K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002)

    Article  ADS  Google Scholar 

  28. H.K. Andersen, N. D’Angelo, P. Michelsen, P. Nielsen, Phys. Rev. Lett. 19, 149 (1967)

    Article  ADS  Google Scholar 

  29. D. Samsonov, G. Morfill, H. Thomas, T. Hagl, H. Rothermel, V. Fortov, A. Lipaev, V. Molotkov, A. Nefedov, O. Petrov, A. Ivanov, S. Krikalev, Phys. Rev. E 67, 036404 (2003)

  30. M.M. Masud, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 346, 165 (2013)

    Article  Google Scholar 

  31. I. Tasnim, M.M. Masud, A.A. Mamun, Astrophys. Space Sci. 343, 647 (2013)

    Article  ADS  Google Scholar 

  32. M.M. Masud, M. Asaduzzaman, A.A. Mamun, J. Plasma Phys. 79, 215 (2012)

    Article  ADS  Google Scholar 

  33. M.M. Masud, M. Asaduzzaman, A.A. Mamun, Phys. Plasmas. 19, 103706 (2012)

    Article  ADS  Google Scholar 

  34. M.M. Masud, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 348, 99 (2013)

    Article  ADS  Google Scholar 

  35. M.S. Alam, M.M. Masud, A.A. Mamun, Chin. Phys. B. 22, 115202 (2013)

    Article  ADS  Google Scholar 

  36. M. Emamuddin, S. Yasmin, A.A. Mamun. J. Korean Phys. Soc. 64, 1834 (2014)

    Article  ADS  Google Scholar 

  37. T.K. Baluku, M.A Hellberg, Phys. Plasmas. 19, 012106 (2012)

    Article  ADS  Google Scholar 

  38. S. Sultana, I. Kourakis, M.A. Hellberg, Plasma Phys. Control Fusion. 54, 105016 (2012)

    Article  ADS  Google Scholar 

  39. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, J. Geophys. Res. 113, A7 (2008)

    Google Scholar 

  40. W.D. Jones, A. Lee, S.M. Gleman, H.J. Douce, Phys. Rev. Lett. 35, 1349 (1975)

    Article  ADS  Google Scholar 

  41. P.K. Shukla, R. Bingham, J.T. Mendonca, D.G. Resendes, Phys. Lett. A. 226, 196 (1997)

    Article  ADS  Google Scholar 

  42. H. Alinejad, Astrophys. Space. Sci. 345, 85 (2013)

    Article  ADS  Google Scholar 

  43. Q.-Z. Luo, N. D’Angelo, R.L. Merlino, Phys. Plasmas. 5, 2868 (1998)

    Article  ADS  Google Scholar 

  44. Y. Nakamura, Phys. Plasmas. 9, 2 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferdousi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdousi, M., Mamun, A.A. Electrostatic Shock Structures in Nonextensive Plasma with Two Distinct Temperature Electrons. Braz J Phys 45, 89–94 (2015). https://doi.org/10.1007/s13538-014-0285-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0285-8

Keywords

Navigation