Advertisement

Brazilian Journal of Physics

, Volume 44, Issue 6, pp 746–752 | Cite as

The Dynamic Resistance of CdS/CdSe/ZnS Co-Sensitized TiO2 Solar Cells

  • Tung Ha ThanhEmail author
  • Lam Quang Vinh
  • Huynh Thanh Dat
General and Applied Physics

Abstract

Quantum dots' sensitized solar cells (QDSSCs) can create the high-performance and low-cost photovoltaic in the future. In this study, we synthesized the film of TiO2/CdS/CdSe/ZnS photoanodes by successive ionic layer adsorption reaction (SILAR) method. The absorption spectra, photoluminescent spectra and electrochemical impedance spectra (EIS) of the film TiO2/CdS/CdSe/ZnS photoanodes show that the structure of energy levels in the conduction band (CB) of photoanode materials CdS, CdSe, and ZnS quantum dots (QDs) can absorb a great number of photons in each region and inject stimulated electrons quickly into the conduction band (CB) of TiO2. Furthermore, we also studied the influence of the SILAR cycles on the dynamic resistance, the lifetime of electrons in QDSSCs through Nyquist and Bode.

Keywords

Counter electrode Quantum dots Solar cells 

Notes

Acknowledgments

This work was supported by Vietnam National University by the name of the project: B 2012-18-5TD, the University of Science of Ho Chi Minh City and Dong Thap University.

References

  1. 1.
    A.J. Nozik, Quantum Dot Solar Cells Physica E 14, 115–120 (2002)Google Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog Photovolt 17, 320–326 (2009)CrossRefGoogle Scholar
  3. 3.
    I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129(14), 4136–4137 (2007)CrossRefGoogle Scholar
  4. 4.
    A.Z. Peng, P. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123(1), 183–184 (2001)CrossRefGoogle Scholar
  5. 5.
    R. Vogel, K. Pohl, H. Weller, Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem. Phys. Lett. 174(3), 241–246 (1990)CrossRefADSGoogle Scholar
  6. 6.
    H.-J. Lee, D.-Y. Kim, J.-S. Yoo, J. Bang, S. Kim, S.-M. Park, Anchoring cadmium chalcogenide quantum dots (QD) onto stable oxide semiconductor for QD sensitized solar cells. Bull. Kor. Chem. Soc. 28, 953–958 (2007)CrossRefGoogle Scholar
  7. 7.
    H.-J. Lee, J.-H. Yum, H.C. Leventis, S.M. Zakeeruddin, S.A. Haque, P. Chen, S.I. Seok, M. Gratzel, M.-K. Nazeeruddin, CdSe quantum dot-sensitized solar cells exceeding efficiency 1 % at full sun intensity. J. Phys. Chem. C 112, 11600–11608 (2008)CrossRefGoogle Scholar
  8. 8.
    W.J. Lee, S.H. Kang, S.-K. Min, Y.-E. Sung, S.-H. Han, Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem. Commun. 10, 1579–1582 (2008)CrossRefGoogle Scholar
  9. 9.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835), 222–225 (2007)CrossRefADSGoogle Scholar
  10. 10.
    T. Lopez-Luke, A. Wolcott, L.-P. Xu, S. Chen, Z. Wen, J. Li, E.D.L. Rosa, J.Z. Zhang, Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. J. Phys. Chem. C 112, 1282–1292 (2008)CrossRefGoogle Scholar
  11. 11.
    I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D. Appl. Phys. 41, 102002 (2008)CrossRefADSGoogle Scholar
  14. 14.
    S. Cheng, W. Fu, H. Yang, L. Zhang, J. Ma, H. Zhao, M. Sun, L. Yang, Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J. Phys. Chem. C 116, 2615–2621 (2012)CrossRefGoogle Scholar
  15. 15.
    V. Senthamilselvi, V. Senthamilselvi, K. Saravanakumar, N.J. Begum, R. Anandhi, A.T. Ravichandran, B. Sakthivel, K. Ravichandran, Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—a comparative study. J. Mater. Sci. Mater. Electron. 23, 302–308 (2012)CrossRefGoogle Scholar
  16. 16.
    H.J. Lee, M. Wang, P. Chen, D.R. Gamelin, S. M. Zakeeruddin, M. Gratze, M. K. Nazeeruddin MK. Efficient CdSe quantum dot-sensitized solar cells pre-pared by an improved successive ionic layer adsorption and reaction process. Nano Letters B 4221–7 (2009)Google Scholar
  17. 17.
    C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, D.Z. Jeng, Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer. Appl. Phys. Lett. 93, 033303–033307 (2008)CrossRefADSGoogle Scholar
  18. 18.
    J. Jasieniak, M. Califano, S.E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5, 5888–5902 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, M. Eck, M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ Sci 3, 1851–1864 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Tubtimtae, M.W. Lee, Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells. Thin Solid Films 526, 225–230 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh, A. Zaban, PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. C 115, 6162–6166 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Hodes, A. Albu-Yaron, F. Decker, P. Motisuke, Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys. Rev. B 36, 4215–4221 (1987)CrossRefADSGoogle Scholar
  23. 23.
    N. Kopidakis, N.R. Neale, A.J. Frank, Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. J. Phys, Chem B 110, 12485–12489 (2006)CrossRefGoogle Scholar
  24. 24.
    V.G. Pol, A. Zaban, Growing TiO2-based pillars by chemisorbed nanotitania followed by annealing. J. Phys, Chem C 111, 14574–14578 (2007)Google Scholar
  25. 25.
    C.H. Chang, Y.L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl. Phys. Lett. 91, 053503 (2007)CrossRefADSGoogle Scholar
  26. 26.
    N. Balisa, V. Dracopoulosb, K. Bourikasc, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91, 246–252 (2013)CrossRefGoogle Scholar
  27. 27.
    J.Y. Kim, S.B. Choi, J.H. Noh, S.H. Yoon, S.W. Lee, T.H. Noh, A.J. Frank, K.S. Hong, Synthesis of CdSe−TiO2 Nanocomposites and Their Applications to TiO2 Sensitized Solar Cells. Langmuir 25, 5348 (2009)CrossRefGoogle Scholar
  28. 28.
    G.V. Chris, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003)CrossRefADSGoogle Scholar
  29. 29.
    F. Santiago, J. Bisquert, G. Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 87, 117–131 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Tubtimtae, M.W. Lee, Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells. Thin Solid Films 526, 225–230 (2012)CrossRefADSGoogle Scholar
  32. 32.
    G. Hodes, Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2014

Authors and Affiliations

  • Tung Ha Thanh
    • 1
    Email author
  • Lam Quang Vinh
    • 2
  • Huynh Thanh Dat
    • 3
  1. 1.Faculty of PhysicsDong Thap UniversityCao LãnhVietnam
  2. 2.University of Science, Vietnam National University—HCM CityHanoiVietnam
  3. 3.Vietnam National University—HCM CityHanoiVietnam

Personalised recommendations