Dynamical Effects in Confined Plasma Turbulence

Abstract

Plasma turbulence at the edge of tokamaks is an issue of major importance in the study of the anomalous transport of particles and energy. Although the behavior of a turbulent plasma seems intractable, it turns out that many of its aspects can be described by low-dimensional non-integrable dynamical models. In this paper, we consider a number of dynamical effects occurring in tokamak plasma edge—in particular the role of internal transport barriers. Furthermore, we present experimental results on turbulent-driven transport for two machines—the Brazilian TCABR tokamak and University of Texas’ Helimak—that can be explained by those theoretical models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    R.D. Hazeltine, J.D. Meiss, Plasma Confinement (Addison Wesley, 1992)

  2. 2.

    W. Horton, Turbulent Transport in Magnetized Plasmas (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  3. 3.

    R. Balescu, Transport Processes in Plasmas: Classical Transport Theory (Elsevier, Amsterdam, 1988)

    Google Scholar 

  4. 4.

    S.J. Camargo, B.D. Scott, D. Biskamp, Phys. Plasmas 3, 3912 (1996)

    Article  ADS  Google Scholar 

  5. 5.

    S.J. Camargo, M.K. Tippett, I.L. Caldas, Phys. Plasmas 7, 2849 (2000)

    Article  ADS  Google Scholar 

  6. 6.

    A.J. Wootton, S.C. McCool, S. Zheng, Fus. Technol. 19, 973 (1991)

    Google Scholar 

  7. 7.

    F. Wagner, U. Stroh, Plasma Phys. Control. Fusion 35, 1321 (1993)

    Article  ADS  Google Scholar 

  8. 8.

    W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Article  ADS  Google Scholar 

  9. 9.

    W. Horton, A. Hasegawa, Chaos 4, 227 (1994)

    Article  ADS  Google Scholar 

  10. 10.

    D. Ruelle, F. Takens, Comm. Math. Phys. 20, 167 (1971)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  11. 11.

    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  12. 12.

    A. Hasegawa, K. Mima, Phys. Rev. Lett. 39, 205 (1977). Phys. Fluids, 21, 81, 1978

    Article  ADS  Google Scholar 

  13. 13.

    K. Katou, J. Phys. Soc. Jpn. 51, 996 (1982)

    Article  Google Scholar 

  14. 14.

    G.I. de Oliveira, F.B. Rizzato, L.P.L. de Oliveira, Phys. D 104, 119 (1997)

    Article  MATH  ADS  Google Scholar 

  15. 15.

    R.L. Erichsen, G. Brunnet, F.B. Rizzato, Phys. Rev. E 60, 6566 (1999)

    Article  ADS  Google Scholar 

  16. 16.

    A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, W. Horton, P.J. Morrison, Phys. Plasmas 13, 042510 (2006)

    Article  ADS  Google Scholar 

  17. 17.

    K.S. Karplyuk, V.N. Oraevskii, V.P. Pavlenko, Plas. Phys. 15, 113 (1973)

    Article  ADS  Google Scholar 

  18. 18.

    D. Walters, G.J. Lewak, J. Plas. Phys. 18, 525 (1977)

    Article  ADS  Google Scholar 

  19. 19.

    A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, Phil. Trans. Royal Soc. London A 366, 609 (2008)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  20. 20.

    P.J. Morrison, Phys. Plasmas 7, 2279 (2000)

    Article  ADS  Google Scholar 

  21. 21.

    D. del-Castillo-Negrete, Phys. Plasmas 7, 1702 (2000)

    MathSciNet  Article  ADS  Google Scholar 

  22. 22.

    W. Horton, H.B. Park, J.M. Kwon, D. Strozzi, P.J. Morrison, D.I. Choi, Phys. Plasmas 5, 3910 (1998)

    Article  ADS  Google Scholar 

  23. 23.

    D. del-Castillo-Negrete, P.J. Morrison, Phys. Fluids A 5, 948 (1993)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  24. 24.

    J.S.E. Portela, I.L. Caldas, R.L. Viana, Eur. Phys. J. Special Topics 165, 195 (2008)

    Article  ADS  Google Scholar 

  25. 25.

    Szezech Jr. J.D., I.L. Caldas, S.R. Lopes, R.L. Viana, P.J. Morrison, Chaos 19, 043108 (2009)

  26. 26.

    J. D. Szezech Jr., I.L. Caldas, S.R. Lopes, P.J. Morrison, R.L. Viana, Phys. Rev. E 86, 036206 (2012)

  27. 27.

    W. Horton, Plas. Phys. Contr. Fusion 27, 937 (1985)

    Article  ADS  Google Scholar 

  28. 28.

    A. Marcus, I.L. Caldas, Z. Guimarães-Filho, P.J. Morrison, W. Horton, Yu. Kuznetsov, I.C. Nascimento, Phys. Plasmas 15, 112304 (2008)

    Article  ADS  Google Scholar 

  29. 29.

    I.C. Nascimento, I.L. Caldas, R.M.O. Galvão, J. Fusion Energy 12, 529 (1993)

    Article  Google Scholar 

  30. 30.

    R.L. Viana, S.R. Lopes, I.L. Caldas, Szezech Jr. J.D., Z. Guimarães-Filho, G.Z. dos Santos Lima, P.P. Galuzio, A.M. Batista, Yu. Kuznetsov, I.C. Nascimento, Comm. Nonlin. Sci. Num. Simul. 17, 4690 (2012)

    Article  MATH  ADS  Google Scholar 

  31. 31.

    Z.O. Guimarães-Filho, I.L. Caldas, R.L. Viana, M. V.A.P. Heller, I.C. Nascimento, Yu. T. Kuznetsov, R. Bengtson, Phys. Plasmas 15, 062501 (2008)

    Article  ADS  Google Scholar 

  32. 32.

    F.A. Marcus, T. Kroetz, M. Roberto, I.L. Caldas, E.C. da Silva, R.L. Viana, Z.O. Guimares-Filho, Nucl. Fusion 48, 024018 (2008)

    Article  ADS  Google Scholar 

  33. 33.

    I.L. Caldas, R.L. Viana, C.V. Abud, J.C.D. Fonseca, Z.O. Guimarães-Filho, T. Kroetz, F.A. Marcus, A. Schelin, J.D. Szezech Jr., D.L. Toufen, M.S. Benkadda, S.R. Lopes, P.J. Morrison, M. Roberto, K. Gentle, Yu. Kuznetsov, I.C. Nascimento, Plas. Phys. Contr. Fusion 54, 124035 (2012)

    Article  ADS  Google Scholar 

  34. 34.

    K.W. Gentle, K. Liao, K. Lee, W.L. Rowan, Plasma Sci. Technol. 12, 391 (2010)

    Article  ADS  Google Scholar 

  35. 35.

    K.W. Gentle, H. He, Plasma Sci. Technol. 10, 284 (2008)

    Article  ADS  Google Scholar 

  36. 36.

    Ch. P. Ritz, E.J. Power, T.L. Rhodes, R.D. Bengtson, K.W. Gentle, H. Li, P.E. Phillips, A.J. Wootton, D.L. Brower, N.C. Luhmann Jr., W.A. Peebles, P.M. Schoch, R.L. Hickok, Rev. Sci. Instrum. 59, 1739 (1988)

    Article  ADS  Google Scholar 

  37. 37.

    D.L. Toufen, Z.O. Guimarães-Filho, I.L. Caldas, J.D. Szezech, S.R. Lopes, R.L. Viana, K.W. Gentle, Phys. Plasmas 20, 022310 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the following Brazilian Government Agencies: CNPq, FAPESP (State of São Paulo), CAPES, and Fundação Araucária (State of Paraná).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Viana.

Additional information

Dedicated to Professor Wendell Horton for his outstanding contributions to the nonlinear dynamics approach to plasma turbulence.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caldas, I.L., Viana, R.L., Guimarães-Filho, Z.O. et al. Dynamical Effects in Confined Plasma Turbulence. Braz J Phys 44, 903–913 (2014). https://doi.org/10.1007/s13538-014-0259-x

Download citation

Keywords

  • Plasma turbulence
  • Non-twist systems
  • Wave mode coupling
  • Tokamaks