Skip to main content
Log in

Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Massey. Ions Negative Rev. Geophys (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  2. P.H. Chaizy, et al. Nature 349, 393 (1991)

    Article  ADS  Google Scholar 

  3. R.A. Gottscho, C.E. Gaebe. IEEE Trans. Plasma Sci. 14, 92 (1986)

    Article  ADS  Google Scholar 

  4. M. Bacal, G.W. Hamilton. Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  5. J. Jacquinot, B.D. McVey, J.E. Scharer. Phys. Rev. Lett. 39, 88 (1977)

    Article  ADS  Google Scholar 

  6. N. Roy, S. Tasnim, A.A. Mamun, Phys. Plasmas. 19, 033705 (2012)

  7. L. Nahar, M.S. Zobaer, N. Roy, A.A. Mamun, Phys. Plasmas. 20,022304 (2013)

  8. S.L. Shapiro, S.A. Teukolsky,Black Holes, White Dwarfs andNeutron Stars: The Physics of Compact Objects(Wiley, New York, 1983)

    Book  Google Scholar 

  9. M.R. Hossen, L. Nahar, S. Sultana, A.A. Mamun, Astrophys. Space Sci. (2014). doi:10.1007/s10509-014-2001-0

    Google Scholar 

  10. S. Chandrasekhar. Mon. Not. R. Astron. Soc. 170, 405 (1935)

    Google Scholar 

  11. S. Chandrasekhar. Phi. Mag. 11, 592 (1931)

    Google Scholar 

  12. S. Chandrasekhar, Astrophys. J.74, 81 (1931)

    Article  MATH  ADS  Google Scholar 

  13. S. Chandrasekhar, An introduction to the study of stellar structure (Dover Publications, New York) (1939)

  14. A.A. Mamun, P.K. Shukla. Phys. Lett. A. 324, 4238 (2010)

    Article  ADS  Google Scholar 

  15. A.A. Mamun, P.K. Shukla, Phys. Plasmas. 17, 104–504 (2010)

  16. G. Manfredi. Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  17. P.K. Shukla. Lett. Phys. A. 352, 242 (2006)

    Article  ADS  Google Scholar 

  18. P.K. Shukla, L. Stenflo. Phys. Lett. A. 355, 378 (2006)

    Article  ADS  Google Scholar 

  19. G. Brodin, M. Marklund. New J. Phys. 9, 277 (2007)

    Article  Google Scholar 

  20. G. Brodin, M. Marklund, Phys. Plasmas. 14, 1121071 (2007)

  21. G. Brodin, M. Marklund. Phys. Rev. Lett. 98, 025–001 (2007)

    Article  Google Scholar 

  22. M. Marklund, B. Eliasson, P.K.s Shukla. Phys. Rev. E. 76, 067401 (2007)

    Article  ADS  Google Scholar 

  23. P.K. Shukla. Nat. Phys. 5, 92 (2009)

    Article  ADS  Google Scholar 

  24. P.K. Shukla, B. Eliasson. Phys. Usp. 53, 51 (2010)

    Article  ADS  Google Scholar 

  25. W. Masood, B. Eliasson, P.K. Shukla. Phys. Rev. E. 81, 066401 (2010)

    Article  ADS  Google Scholar 

  26. W. Masood, B. Eliasson, Phys. Plasmas. 18, 034503 (2011)

  27. M.M. Hossain, A.A. Mamun, K.S. Ashrafi. Phys. Plasmas. 18, 103704 (2011)

    Article  ADS  Google Scholar 

  28. P.K. Shukla, A.A. Mamun. Europhys. Lett. 94, 65002 (2011)

    Article  ADS  Google Scholar 

  29. B. Eliasson, P.K. Shukla. Europhys. Lett. 97, 15001 (2012)

    Article  ADS  Google Scholar 

  30. M.S. Zobaer, N. Roy, A.A. Mamun. J. Plasma Phys. 79, 65 (2013)

    Article  ADS  Google Scholar 

  31. M.S. Zobaer, N. Roy, A.A. Mamun. J. Mod. Phys. 3, 604 (2012)

    Article  Google Scholar 

  32. M.S. Zobaer, K.N. Mukta, L. Nahar, L., N. Roy, A.A. Mamun. IEEE Trans. Plasma Sci. 41, 5 (2013)

    Google Scholar 

  33. S. Maxon, J. Viecelli. Phys. Rev. Lett. 32, 4 (1974)

    Article  ADS  Google Scholar 

  34. B.’dovich Ya. Zel, P. Yu. Raizer. Physics of shock waves and high temperature hydrodynamic phenomena (Academic, NewYork, 1967)

    Google Scholar 

  35. M.S. Zobaer, L. Nahar, A.A. Mamun. IJERT. 2, 1 (2013)

    Google Scholar 

  36. T. Akhter, M.M. Hossain, A.A. Mamun. Commun. Theor. Phys. 59, 745 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  37. F. Ferro, A. Lavagno, P. Quarati. Eur. Phys. J. A. 21, 529 (2004)

    Article  ADS  Google Scholar 

  38. A.R. Plastino, A. Plastino. Phys. Lett. A. 174, 384 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Gervino, A. Lavagno, D. Pigato. Cent. Eur. J. Phys. (2012). doi:10.2478/s11534-011-0123-3

    Google Scholar 

  40. A. Lavagno, D. Pigato. Eur. Phys. J. A. 47, 52 (2011)

    Article  ADS  Google Scholar 

  41. C. Feron, J. Hjorth, Phys. Rev. E. 77, 022106 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hossen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.R., Nahar, L. & Mamun, A.A. Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma. Braz J Phys 44, 638–644 (2014). https://doi.org/10.1007/s13538-014-0242-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0242-6

Keywords

Navigation