Brazilian Journal of Physics

, Volume 44, Issue 2–3, pp 247–254 | Cite as

Locating Cantori for Symmetric Tokamap and Symmetric Ergodic Magnetic Limiter Map Using Mean-Energy Error Criterion

  • S. M. Jazayeri
  • A. R. Sohrabi
General and Applied Physics


We use a method based on the conservation of energy, the mean-energy error criterion, to approximately locate the place of a cantorus by locating the series of its convergents. The mean-energy error curve has nearly stationary parts in the vicinity of elliptic (minimax) orbits, the so-called magnetic islands. Stable minimax orbits converge to orbits homoclinic to a cantorus. By tracing the island series, we limit the cantorus to a narrow region. A near-critical perturbation parameter is used so that, while the cantorus may be destabilized, its high-order minimax orbits remain intact. As illustrations, we consider two symplectic maps, systematically derived from the Hamilton–Jacobi equation and Jacobi’s theorem, in the context of the magnetically confined plasmas in a tokamak: a symmetric tokamap realistically reproduces the main features of a tokamak, and a symmetric ergodic magnetic limiter (EML) map is defined to describe the action of EML rings on the magnetic field lines in the tokamak.


Cantori Symplectic maps Ergodic magnetic limiter map Tokamap Tokamak 


  1. 1.
    R.S. MacKay, Renormalisation in Area-Preserving Maps (World Scientific, Singapore, 1993)zbMATHGoogle Scholar
  2. 2.
    J.D. Meiss, Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    I.C. Percival, in Nonlinear Dynamics and the Beam-Beam Interaction, ed. by M. Month, J.C. Herrera (American Institute of Physics, New York, 1979), pp. 302–310Google Scholar
  4. 4.
    R.S. Mackay, T.D. Meiss, I.C. Percival, Stochasticity in Hamiltonian systems. Phys. Rev. Lett. 52, 697 (1988)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    R.S. Mackay, A renormalization approach to invariant circles in area-preserving maps. Phsica 7D, 283 (1983)ADSMathSciNetGoogle Scholar
  6. 6.
    J.H. Misguich et al., Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines. Ann. Phys. 28, 6 (2003)CrossRefGoogle Scholar
  7. 7.
    S.R. Hudson, Calculation of cantori for Hamiltonian flows. Phys. Rev. E. 74, 056203 (2006)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    R.L. Dewar, S.R. Hudson, A.M. Gibson, Action-gradient-minimizing pseudo-orbits and almost-invariant tori. Commun. Nonlinear Sci. Numer. Simul. 17, 2062–2073 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S.S. Abdullaev, Construction of Mappings for Hamiltonian Systems and Their Applications (Springer, Berlin, 2006), p. 156zbMATHGoogle Scholar
  10. 10.
    R.S. Mackay et al., Transport in Hamiltonian systems. Phsica 13D, 55–81 (1984)ADSMathSciNetGoogle Scholar
  11. 11.
    C. Efthymiopoulos et al., Cantori, islands and asymptotic curves in the stickiness region. Cel. Mech. Dyn. Astron. 73, 221 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    R. Balescu, Tokamap: a Hamiltonian twist map for magnetic field lines in a toroidal geometry. Phys. Rev. E. 58, 951 (1998)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    E.C. da Silva, I.L. Caldas, R.L. Viana, Field line diffusion and loss in a tokamak with an ergodic magnetic limiter. Phys. Plasmas 8, 2855 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    A.R. Sohrabi, S.M. Jazayeri, M. Mollabashi, On the accuracy of the symmetric ergodic magnetic limiter map in tokamaks. J. Plasma Phys. 76, 777 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S.S. Abdullaev, On mapping models of field lines in a stochastic magnetic field. Nucl. Fusion 44, S12–S27 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    S.S. Abdullaev, A new integration method of Hamiltonian systems by symplectic maps. J. Phys. A Math. Gen. 32, 2745 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    E.C. da Silva, I.L. Caldas, R.L. Viana, The structure of chaotic magnetic field lines in a tokamak with external nonsymmetric magnetic perturbations. IEEE Trans. Plasma Sci. 29(4), 617 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M.Y. Kucinski, I.L. Caldas, L.H.A. Monteiro, V.J. Okano, Toroidal plasma equilibrium with arbitrary current distribution. J Plasma Phys. 44, 303 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2014

Authors and Affiliations

  1. 1.Physics DepartmentIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Computer and information technology Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran

Personalised recommendations