Brazilian Journal of Physics

, Volume 44, Issue 1, pp 138–153 | Cite as

Decoherence: A Closed-System Approach

  • Sebastian Fortin
  • Olimpia Lombardi
  • Mario Castagnino
Statistical

Abstract

The aim of this paper is to review a new perspective about decoherence, according to which formalisms originally devised to deal just with closed or open systems can be subsumed under a closed-system approach that generalizes the traditional account of the phenomenon. This new viewpoint dissolves certain conceptual difficulties of the orthodox open-system approach but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence, as commonly claimed. Moreover, when the behavior of a decoherent system is described from a closed-system perspective, the account of decoherence turns out to be more general than that supplied by the open-system approach, and the quantum-to-classical transition defines unequivocally the realm of classicality by identifying the observables with classical-like behavior.

Keywords

Quantum decoherence Closed system Relevant observables 

References

  1. 1.
    A.J. Leggett, in Reflections on the quantum measurement paradox, in ed. by B.J. Hiley and F.D. Peat. Quantum Implications (Routledge and Kegan Paul, London, 1987)Google Scholar
  2. 2.
    J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997)Google Scholar
  3. 3.
    G. Bacciagaluppi, M. Hemmo, Proceed. PSA. 1, 345 (1994)Google Scholar
  4. 4.
    G. Bacciagaluppi, M. Hemmo, Stud. Hist. Phil. Mod. Phys. 27, 239 (1996)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. Elby, Proceed. PSA. 1, 355 (1994)Google Scholar
  6. 6.
    R. Healey, Topoi. 14, 55 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    J.P. Paz, W.H. Zurek, in Environment-Induced Decoherence and the Transition from Quantum to Classical, ed. by D. Heissvol. Lecture Notes in Physics, vol. 587 (Springer, Heidelberg-Berlin, 2002)Google Scholar
  8. 8.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    N.G. van Kampen, Physica. 20, 603 (1954)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    L. van Hove, Physica. 23, 441 (1957)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    L. van Hove, Physica. 25, 268 (1959)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    A. Daneri, A. Loinger, G. Prosperi, Nucl. Phys. 33, 297 (1962)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    R. Omnès, Braz. Jour, Phys. 35, 207 (2005)ADSGoogle Scholar
  14. 14.
    H.D. Zeh, Found. Phys. 1, 69 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    H.D. Zeh, in On the Irreversibility of Time and Observation in Quantum Theory, ed. by B. d’Espagnat. Foundations of Quantum Mechanics (Academic Press, New York, 1971)Google Scholar
  16. 16.
    H.D. Zeh, Found. Phys. 3, 109 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    W.H. Zurek, Phys. Rev. D. 24, 1516 (1981)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    W.H. Zurek, Phys. Rev. D. 26, 1862 (1982)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A. 25(8), 611–617 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    W.H. Zurek, Phys. Today. 44, 36 (1991)CrossRefGoogle Scholar
  21. 21.
    W.H. Zurek, Progr. Theor. Phys. 89, 281 (1993)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. Diosi, Phys. Lett. A. 120, 377 (1987)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. Diosi, Phys. Rev. A. 40, 1165 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    G.J. Milburn, Phys. Rev. A. 44, 5401 (1991)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    R. Penrose, Shadows of the Mind Oxford: Oxford University Press, 1995Google Scholar
  26. 26.
    G. Casati, B. Chirikov, Phys. Rev. Lett. 75, 349 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    G. Casati, B. Chirikov, Physica D. 86, 220 (1995)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    S. Adler. Quantum Theory as an Emergent Phenomenon (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  29. 29.
    R. Bonifacio, S. Olivares, P. Tombesi, D. Vitali, Phys. Rev. A. 053802, 61 (2000)Google Scholar
  30. 30.
    G.W. Ford, R.F. O’Connell, Phys. Lett. A. 286, 87 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    M. Frasca, Lett. Phys. A. 308, 135 (2003)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    A.C. Sicardi Shifino, G. Abal, R. Siri, A. Romanelli, R. Donangelo, Intrinsic decoherence and irreversibility in a quasiperiodic kicked rotor, (2003). arXiv:9805065
  33. 33.
    R. Gambini, R. Porto, J. Pullin, Int. Jour. Mod. Phys. D. 15, 2181 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    M. Castagnino, R. Laura, Phys. Rev. A. 62(02), 2107 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    M. Castagnino, R. Laura, Int. Jour. Theor. Phys. 39, 1737 (2000)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    M. Castagnino, O. Lombardi, Int. Jour. Theor. Phys. 42, 1281 (2003)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    M. Castagnino, O. Lombardi, Stud. Hist. Phil. Mod. Phys. 35, 73 (2004)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    M. Castagnino, O. Lombardi, Phys. Rev. A. 72(01), 2102 (2005)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    M. Castagnino, O. Lombardi, Phil. Scie. 72, 764 (2005)CrossRefMathSciNetGoogle Scholar
  40. 40.
    M. Castagnino, M. Gadella, Found. Phys. 36, 920 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    M. Castagnino, Phys. Lett. A. 357, 97 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    O. Lombardi, et al., Int. J. Mod. Phys. D 20, 861 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    O. Lombardi, S. Fortin, M. Castagnino, J.S. Ardenghi, Philos. Sci. 78(5), 1024–1036 (2011)CrossRefMathSciNetGoogle Scholar
  44. 44.
    O. Pessoa Jr, Synthese. 113, 323 (1998)Google Scholar
  45. 45.
    W.H. Zurek. Preferred sets of states, predictability, classicality and environment-induced decoherence, in J.J. Halliwell, J. Pérez-Mercader and W.H. Zurek (eds.), Physical Origins of Time Asymmetry (Cambridge University Press, Cambridge, 1994)Google Scholar
  46. 46.
    E. Calzetta, B.L. Hu, F. Mazzitelli, Phys. Rep. 352, 459 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    W.H. Zurek, Phil. Trans. Roy. Soc. A356, 1793. (1998). arXiv:9805065.
  48. 48.
    B. d’Espagnat, Conceptual Foundations of Quantum Mechanics (Reading MA, Benjamin, 1976)Google Scholar
  49. 49.
    B. d’Espagnat, Veiled Reality An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading MA, 1995)Google Scholar
  50. 50.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Heidelberg-Berlin, 2007)Google Scholar
  51. 51.
    W.H. Zurek, Nature Physics. 5, 181 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    M. Castagnino, R. Laura, O. Lombardi, Phil. Scie. 74, 968 (2007)CrossRefMathSciNetGoogle Scholar
  53. 53.
    M. Castagnino, S. Fortin, R. Laura, O. Lombardi, Class. Quant. Grav. 154002, 25 (2008)MathSciNetGoogle Scholar
  54. 54.
    M. Castagnino, S. Fortin, Int. J. Theor. Phys. 50(7), 2259–2267 (2011)CrossRefMathSciNetGoogle Scholar
  55. 55.
    M. Castagnino, S. Fortin, Int. J. Theor. Phys. 52(5), 1379–1398 (2013)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    D. Zeh, Séminaire Poincaré. 2, 1 (2005)MathSciNetGoogle Scholar
  57. 57.
    M. Castagnino, S. Fortin, O. Lombardi, J. Phys. A (Math. and Theor.) 065304, 43 (2010)Google Scholar
  58. 58.
    N. Harshman, S. Wickramasekara, Phys. Rev. Lett. 080406, 98 (2007)Google Scholar
  59. 59.
    M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A. 25, 1431 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    O. Lombardi, S. Fortin, M. Castagnino, in The Problem of Identifying the System and the Environment in the Phenomenon of Decoherence. ed. by H. de Regt, S. Okasha, S. Hartmann. EPSA Philosophy of Science: (Springer, Amsterdam, 2011)Google Scholar
  61. 61.
    E. Joos, D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996)Google Scholar
  62. 62.
    O. Lombardi, Found. Scie. 9, 105 (2004)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    O. Lombardi, Synthese. 144, 23 (2005)CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    M. Castagnino, S. Fortin, J. Phys. A: Math. Theor. 45, 444009 (2012)ADSCrossRefMathSciNetGoogle Scholar
  65. 65.
    M. Castagnino, S. Fortin, Mod. Phys. Lett. A. 26, 2365–2373 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    E. Kolb, M. Turner. The early Universe (Addison-Wesley, Redwood City, 1990)Google Scholar
  67. 67.
    V. Mukahnov. Physical foundations of Cosmology, (2005)Google Scholar
  68. 68.
    J. Peacock. Cosmological Physics, (1999)Google Scholar
  69. 69.
    S. Weinberg. Gravitation and Cosmology, (1972)Google Scholar
  70. 70.
    P. Coles, F. Lucchin, Cosmology (John Wiley and Sons, The origin and Evolution of Cosmic Structure, 2002)Google Scholar
  71. 71.
    J. Peebles, Principles of Physical Cosmology (Princeton University Press 1993)Google Scholar
  72. 72.
    M. Franco, E. Calzetta. Class. Quant. Grav. 145024, 28 (2011)Google Scholar
  73. 73.
    F.C. Lombardo, D. Mazzitelli, Phys. Rev. D. 53(10), 1103 (1996)Google Scholar
  74. 74.
    A. Starobinsky, Stochastic De Sitter stage in the early universe. Lect. Notes Phys., 246 (1986)Google Scholar
  75. 75.
    D. Polarski, A. Starobinsky, Class. Quant. Grav. 13, 377 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  76. 76.
    C. Kiefer, D. Polarski, Adv. Sci. Lett. 2, 164–173 (2009)CrossRefGoogle Scholar
  77. 77.
    C. Kiefer, D. Polarski, Annalen Phys. 7, 137–158 (1998)ADSCrossRefMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2013

Authors and Affiliations

  • Sebastian Fortin
    • 1
  • Olimpia Lombardi
    • 2
  • Mario Castagnino
    • 3
  1. 1.CONICET, Department of Physics, FCEN (UBA)Buenos AiresArgentina
  2. 2.CONICET and FCEN (UBA)Buenos AiresArgentina
  3. 3.CONICET, IAFE (CONICET-UBA), IFIR and FCEN (UBA)Buenos AiresArgentina

Personalised recommendations