Skip to main content

Breakdown Voltage Distributions in Ne-Filled Diode at 1.33 mbar with Corona Appearance in Pre-breakdown Regime

Abstract

The electrical breakdown of a gas subject to an up-ramping external voltage is studied, experimentally and theoretically, under conditions leading to the appearance of a positive corona at the anode in the pre-breakdown regime. Experimentally, voltage ramps with various rates k in the interval ranging from 0.3 V/s to 26 kV/s are applied to the diode, with the histogram of breakdown voltages being recorded for each rate. The theoretical model gives attention to the pre-breakdown multiplication causing the corona, which tends to reduce the statistical time delay \(t_{S}\) before the primary electron is released and hence to make \(t_{S}\) comparable to the formative time \(t_{F}\). The multiplication being therefore expected to affect the voltage dependence of the electron yield, a nonlinear equation relating the yield to the overvoltage is introduced. The resulting theoretical expression for the breakdown voltage distribution agrees well with the experimental histograms. Especially noteworthy is the good agreement with the low-voltage tail of the distribution, a segment of the data that has challenged previous theoretical analyses of the problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J.M. Meek, J.D. Craggs. Electrical Breakdown of Gases (Wiley, New York, 1978)

    Google Scholar 

  2. M. Kristiansen, A.H. Guenther, in Electrical Breakdown and Discharges in Gases, ed. by E.E. Kunhart, L.H. Luessen. (Plenum, New York, 1983)

    Google Scholar 

  3. B. Lončar, P. Osmokrovič, S. Stankovič, IEEE Trans. Nucl. Sci. 76, 1725 (2003)

    ADS  Google Scholar 

  4. M.M. Gutorov. Basics of Light Techniques and Light Sources (in Russian) (Moscow, Energoatomizdat, 1983)

    Google Scholar 

  5. K. Zuber, Annu. Phys. 76, 231 (1925)

    Article  ADS  Google Scholar 

  6. M. von Laue, Annu. Phys. 76, 261 (1925)

    Article  MATH  Google Scholar 

  7. L.B. Loeb, Rev. Mod. Phys. 20, 151 (1948)

    Article  ADS  Google Scholar 

  8. R.A. Wijsman, Phys. Rev. 75, 833 (1949)

    Article  ADS  Google Scholar 

  9. F. Llewellyn-Jones, in Electrical Breakdown and Discharges in Gases, ed. by E.E. Kunhart, L.H. Luessen. (Plenum, New York, 1983)

    Google Scholar 

  10. M. Zambra, M. Favre, J. Moreno, H. Chuaqui, E. Wyndham, P. Choi, IEEE Trans. Plasma Sci. 27, 746 (1999)

    Article  ADS  Google Scholar 

  11. J. Moreno, M. Zambra, M. Favre, IEEE Trans. Plasma Sci. 30, 417 (2002)

    Article  ADS  Google Scholar 

  12. R.S. Moss, J.G. Eden, M.J. Kushner, J. Phys. D Appl. Phys. 37, 2502 (2004)

    Article  ADS  Google Scholar 

  13. E. Wagenaars, M.D. Bowden, G.MW. Kroesen, Plasma Sources. Sci. Technol. 14, 342 (2005)

    Google Scholar 

  14. M.K. Radović, Č.A. Maluckov, S.A. Rančev, IEEE Trans. Plasma Sci. 35, 1738 (2007)

    Article  ADS  Google Scholar 

  15. M. Radović, M. Pejović, D.A. Bošan, in Contrib. Papers of the 13th Int. Symp. on the Phys. on Ionized Gases, Sibenik, ed. by M.V. Kurepa. (Univ. Belgrade, Belgrade, Yugoslavia, 1986), pp. 439–442

    Google Scholar 

  16. M.M. Pejović, R.D. Filipović, Int. J. Electron. 20, 251 (1989)

    Article  Google Scholar 

  17. M. Radović, T. Jovanović, Č. Maluckov, O. Stepanović, Balkan Phys. Lett. 5, 1447 (1997)

    Google Scholar 

  18. M. Pejović, G.S. Ristić, J.P. Karamarković, Phys. J. D Appl. Phys. 35, 91 (2002)

    Article  ADS  Google Scholar 

  19. M. Radović, Č. Maluckov, IEEE Trans. Plasma Sci. 29, 832 (2001)

    Article  ADS  Google Scholar 

  20. Č.A. Maluckov, M.K. Radović, Contrib. Plasma Physics. 42, 556 (2002)

    Article  ADS  Google Scholar 

  21. Č.A. Maluckov, M.K. Radović, IEEE Trans. Plasma Sci. 30, 1579 (2002)

    Article  Google Scholar 

  22. S.D. Mitić, Č.A. Maluckov, M.K. Radović, Contrib. Plasma Physics. 46, 292 (2006)

    ADS  Google Scholar 

  23. M.K. Radović, Č.A. Maluckov, M.K. Radović, IEEE Trans. on Plasma Sci. 35, 1738 (2007)

    Article  ADS  Google Scholar 

  24. Y.P. Raizer, in Mathematical Statistics with Applications. Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg, Germany, 1991. (Belmont, Duxbury, MA, 1996), pp. 663–668

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia (Projects III 43011 and III 43011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Čedomir A. Maluckov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Radović, M.K., Maluckov, Č.A., Karamarković, J.P. et al. Breakdown Voltage Distributions in Ne-Filled Diode at 1.33 mbar with Corona Appearance in Pre-breakdown Regime. Braz J Phys 43, 145–151 (2013). https://doi.org/10.1007/s13538-013-0125-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0125-2

Keywords