Skip to main content
Log in

Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We review the theoretical and the experimental researches aimed at quantifying or identifying quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We first overview, at the formal level, a method to determine the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we describe an experimental implementation of that method. Previous theoretical analysis of quantum discord decoherence had predicted the time dependence of the discord to change suddenly under the influence of phase noise. The experiment attests to the robustness of the effect, sufficient to confirm the theoretical prediction even under the additional influence of a thermal environment. Finally, we discuss an observable witness for the quantumness of correlations in two-qubit systems and its first NMR implementation. Should the nature, not the amount, of the correlation be under scrutiny, the witness offers the most attractive alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Equation (24) contains the typical density operator describing the state of NMR systems.

  2. A modified version of this classicality witness was implemented in the optical context [36].

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  3. J.S. Bell, Physica 1, 195 (1964)

    Google Scholar 

  4. J.F. Clauser, A. Shimony, Rep. Prog. Phys. 41, 1882 (1978)

    Article  ADS  Google Scholar 

  5. A. Aspect, http://arxiv.org/abs/quant-ph/0402001 (2004)

  6. N.D. Mermin, Rev. Mod. Phys. 65, 803 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  8. S. Popescu, Phys. Rev. Lett. 72, 797 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  10. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  11. C.E. Shannon, Bell Syst Tech J 27, 379 (1948)

    MathSciNet  MATH  Google Scholar 

  12. B. Schumacher, Phys. Rev. A 51, 2738 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  13. B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Schumacher, M.D. Westmoreland, Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  15. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  16. L.C. Céleri, J. Maziero, R.M. Serra, Int. J. Quant. Inf. 9, 1837 (2011)

    Article  MATH  Google Scholar 

  17. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  18. J.A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 59, 91 (2011)

    Article  Google Scholar 

  19. X.-h. Peng, D. Suter, Front. Phys. China 5, 1 (2010)

    Article  ADS  Google Scholar 

  20. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  21. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  22. R. Jozsa, N. Linden, Proc. R. Soc. Lond. A 459, 2011 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. N. Linden, S. Popescu, Phys. Rev. Lett. 87, 047901 (2001)

    Article  ADS  Google Scholar 

  24. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  25. V. Vedral, Found. Phys. 40, 1141 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. Datta, A. Shaji, Int. J. Quant. inf. 9, 1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Eastin, http://arxiv.org/abs/1006.4402 (2010)

  28. D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R.M. Serra, L.C. Céleri, Phil. Trans. R. Soc. A 370, 4821 (2012)

    Article  ADS  Google Scholar 

  29. J. Maziero, L.C. Céleri, R.M. Serra, http://arxiv.org/abs/1004.2082 (2010)

  30. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Maziero, R.M. Serra, Int. J. Quant. Inf. 10, 1250028 (2012)

    Article  MathSciNet  Google Scholar 

  33. D.O. Soares-Pinto, L.C. Céleri, R. Auccaise, F.F. Fanchini, E.R. deAzevedo, J. Maziero, T.J. Bonagamba, R.M. Serra, Phys. Rev. A 81, 062118 (2010)

    Article  ADS  Google Scholar 

  34. R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  35. R. Auccaise, J. Maziero, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 070501 (2011)

    Article  ADS  Google Scholar 

  36. G.H. Aguilar, O. Jiménez Farías, J. Maziero, R.M. Serra, P.H. Souto Ribeiro, S.P. Walborn, Phys. Rev. Lett. 108, 063601 (2012)

    Article  ADS  Google Scholar 

  37. I.S. Oliveira, T.J. Bonagamba, R.S. Sarthour, J.C.C. Freitas, E.R. de Azevedo, NMR Quantum Information Processing (Elsevier, Amsterdan, 2007)

    Google Scholar 

  38. H. Kampermann, H.W.S. Veeman, J. Chem. Phys. 122, 214108 (2005)

    Article  ADS  Google Scholar 

  39. N. Sinha, T.S. Mahesh, K.V. Ramanathan, A. Kumar, J. Chem. Phys. 114, 4415 (2001)

    Article  ADS  Google Scholar 

  40. R.S. Sarthour, E.R. deAzevedo, F.A. Bonk, E.L.G. Vidoto, T.J. Bonagamba, A.P. Guimaraes, J.C.C. Freitas, I.S. Oliveira, Phys. Rev. A 68, 022311 (2003)

    Article  ADS  Google Scholar 

  41. F.A. Bonk, R.S. Sarthour, E.R. deAzevedo, J.D. Bulnes, G.L. Mantovani, J.C.C. Freitas, T.J. Bonagamba, A.P. Guimaraes, I.S. Oliveira, Phys. Rev. A 69, 42322 (2004)

    Article  Google Scholar 

  42. C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1992)

    Google Scholar 

  43. K. Radley, L.W. Reeves, A.S. Tracey, J. Chem. Phys. 80, 174 (1976)

    Article  Google Scholar 

  44. G. Jaccard, S. Wimperis, G. Bodenhausen, J. Chem. Phys. 85, 6282 (1986)

    Article  ADS  Google Scholar 

  45. R. Auccaise, J. Teles, R.S. Sarthour, T.J. Bonagamba, I.S. Oliveira, E.R. deAzevedo, J. Magn. Reson. 192, 17 (2008)

    Article  ADS  Google Scholar 

  46. E. Knill, I.L. Chuang, R. Laflamme, Phys. Rev. A 57, 3348 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  47. D.G. Cory, M.D. Price, T.F. Havel, Physica D 120, 82 (1998)

    Article  ADS  Google Scholar 

  48. N. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Khaneja, R. Brochett, S.J. Glaser, Phys. Rev. A. 63, 032308 (2001)

    Article  ADS  Google Scholar 

  50. N. Khaneja, T. Reiss, C. Kehlet et al., J. Magn. Reson. 172, 296 (2005)

    Article  ADS  Google Scholar 

  51. E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)

    Article  ADS  Google Scholar 

  52. J. Teles, E.R. deAzevedo, R. Auccaise, R.S. Sarthour, I.S. Oliveira, T.J. Bonagamba, J. Chem. Phys. 126, 154506 (2007)

    Article  ADS  Google Scholar 

  53. G.L. Long, H.Y. Yan, Y. Sun, J. Opt. B 3, 376 (2001)

    Article  ADS  Google Scholar 

  54. G.M. Leskowitz, L.J. Mueller, Phys. Rev. A 69, 052302 (2004)

    Article  ADS  Google Scholar 

  55. M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O. Landon-Cardinal, D. Poulin, Y.-K. Liu, Nat. Commun. 1, 149 (2010)

    Article  Google Scholar 

  56. D.O. Soares-Pinto, M.H.Y. Moussa, J. Maziero, E.R. deAzevedo, T.J. Bonagamba, R.M. Serra, L.C. Céleri, Phys. Rev. A 83, 062336 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from UFABC, CNPq, CAPES, FAPESP, FAPERJ, and Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ). The warm hospitality of Instituto de Física de São Carlos—Universidade de São Paulo (IFSC-USP) and Centro Brasileiro de Pesquisas Físicas (CBPF), where the experiments were performed, is also acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maziero, J., Auccaise, R., Céleri, L.C. et al. Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature. Braz J Phys 43, 86–104 (2013). https://doi.org/10.1007/s13538-013-0118-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0118-1

Keywords

Navigation