Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature

  • 347 Accesses

  • 15 Citations

Abstract

We review the theoretical and the experimental researches aimed at quantifying or identifying quantum correlations in liquid-state nuclear magnetic resonance (NMR) systems at room temperature. We first overview, at the formal level, a method to determine the quantum discord and its classical counterpart in systems described by a deviation matrix. Next, we describe an experimental implementation of that method. Previous theoretical analysis of quantum discord decoherence had predicted the time dependence of the discord to change suddenly under the influence of phase noise. The experiment attests to the robustness of the effect, sufficient to confirm the theoretical prediction even under the additional influence of a thermal environment. Finally, we discuss an observable witness for the quantumness of correlations in two-qubit systems and its first NMR implementation. Should the nature, not the amount, of the correlation be under scrutiny, the witness offers the most attractive alternative.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    Equation (24) contains the typical density operator describing the state of NMR systems.

  2. 2.

    A modified version of this classicality witness was implemented in the optical context [36].

References

  1. 1.

    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

  2. 2.

    E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555 (1935)

  3. 3.

    J.S. Bell, Physica 1, 195 (1964)

  4. 4.

    J.F. Clauser, A. Shimony, Rep. Prog. Phys. 41, 1882 (1978)

  5. 5.

    A. Aspect, http://arxiv.org/abs/quant-ph/0402001 (2004)

  6. 6.

    N.D. Mermin, Rev. Mod. Phys. 65, 803 (1993)

  7. 7.

    R.F. Werner, Phys. Rev. A 40, 4277 (1989)

  8. 8.

    S. Popescu, Phys. Rev. Lett. 72, 797 (1994)

  9. 9.

    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  10. 10.

    M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)

  11. 11.

    C.E. Shannon, Bell Syst Tech J 27, 379 (1948)

  12. 12.

    B. Schumacher, Phys. Rev. A 51, 2738 (1995)

  13. 13.

    B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)

  14. 14.

    B. Schumacher, M.D. Westmoreland, Phys. Rev. A 74, 042305 (2006)

  15. 15.

    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

  16. 16.

    L.C. Céleri, J. Maziero, R.M. Serra, Int. J. Quant. Inf. 9, 1837 (2011)

  17. 17.

    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

  18. 18.

    J.A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 59, 91 (2011)

  19. 19.

    X.-h. Peng, D. Suter, Front. Phys. China 5, 1 (2010)

  20. 20.

    S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

  21. 21.

    G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

  22. 22.

    R. Jozsa, N. Linden, Proc. R. Soc. Lond. A 459, 2011 (2003)

  23. 23.

    N. Linden, S. Popescu, Phys. Rev. Lett. 87, 047901 (2001)

  24. 24.

    A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

  25. 25.

    V. Vedral, Found. Phys. 40, 1141 (2010)

  26. 26.

    A. Datta, A. Shaji, Int. J. Quant. inf. 9, 1787 (2011)

  27. 27.

    B. Eastin, http://arxiv.org/abs/1006.4402 (2010)

  28. 28.

    D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R.M. Serra, L.C. Céleri, Phil. Trans. R. Soc. A 370, 4821 (2012)

  29. 29.

    J. Maziero, L.C. Céleri, R.M. Serra, http://arxiv.org/abs/1004.2082 (2010)

  30. 30.

    J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

  31. 31.

    L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)

  32. 32.

    J. Maziero, R.M. Serra, Int. J. Quant. Inf. 10, 1250028 (2012)

  33. 33.

    D.O. Soares-Pinto, L.C. Céleri, R. Auccaise, F.F. Fanchini, E.R. deAzevedo, J. Maziero, T.J. Bonagamba, R.M. Serra, Phys. Rev. A 81, 062118 (2010)

  34. 34.

    R. Auccaise, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, J. Maziero, A.M. Souza, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 140403 (2011)

  35. 35.

    R. Auccaise, J. Maziero, L.C. Céleri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 107, 070501 (2011)

  36. 36.

    G.H. Aguilar, O. Jiménez Farías, J. Maziero, R.M. Serra, P.H. Souto Ribeiro, S.P. Walborn, Phys. Rev. Lett. 108, 063601 (2012)

  37. 37.

    I.S. Oliveira, T.J. Bonagamba, R.S. Sarthour, J.C.C. Freitas, E.R. de Azevedo, NMR Quantum Information Processing (Elsevier, Amsterdan, 2007)

  38. 38.

    H. Kampermann, H.W.S. Veeman, J. Chem. Phys. 122, 214108 (2005)

  39. 39.

    N. Sinha, T.S. Mahesh, K.V. Ramanathan, A. Kumar, J. Chem. Phys. 114, 4415 (2001)

  40. 40.

    R.S. Sarthour, E.R. deAzevedo, F.A. Bonk, E.L.G. Vidoto, T.J. Bonagamba, A.P. Guimaraes, J.C.C. Freitas, I.S. Oliveira, Phys. Rev. A 68, 022311 (2003)

  41. 41.

    F.A. Bonk, R.S. Sarthour, E.R. deAzevedo, J.D. Bulnes, G.L. Mantovani, J.C.C. Freitas, T.J. Bonagamba, A.P. Guimaraes, I.S. Oliveira, Phys. Rev. A 69, 42322 (2004)

  42. 42.

    C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1992)

  43. 43.

    K. Radley, L.W. Reeves, A.S. Tracey, J. Chem. Phys. 80, 174 (1976)

  44. 44.

    G. Jaccard, S. Wimperis, G. Bodenhausen, J. Chem. Phys. 85, 6282 (1986)

  45. 45.

    R. Auccaise, J. Teles, R.S. Sarthour, T.J. Bonagamba, I.S. Oliveira, E.R. deAzevedo, J. Magn. Reson. 192, 17 (2008)

  46. 46.

    E. Knill, I.L. Chuang, R. Laflamme, Phys. Rev. A 57, 3348 (1998)

  47. 47.

    D.G. Cory, M.D. Price, T.F. Havel, Physica D 120, 82 (1998)

  48. 48.

    N. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

  49. 49.

    N. Khaneja, R. Brochett, S.J. Glaser, Phys. Rev. A. 63, 032308 (2001)

  50. 50.

    N. Khaneja, T. Reiss, C. Kehlet et al., J. Magn. Reson. 172, 296 (2005)

  51. 51.

    E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)

  52. 52.

    J. Teles, E.R. deAzevedo, R. Auccaise, R.S. Sarthour, I.S. Oliveira, T.J. Bonagamba, J. Chem. Phys. 126, 154506 (2007)

  53. 53.

    G.L. Long, H.Y. Yan, Y. Sun, J. Opt. B 3, 376 (2001)

  54. 54.

    G.M. Leskowitz, L.J. Mueller, Phys. Rev. A 69, 052302 (2004)

  55. 55.

    M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O. Landon-Cardinal, D. Poulin, Y.-K. Liu, Nat. Commun. 1, 149 (2010)

  56. 56.

    D.O. Soares-Pinto, M.H.Y. Moussa, J. Maziero, E.R. deAzevedo, T.J. Bonagamba, R.M. Serra, L.C. Céleri, Phys. Rev. A 83, 062336 (2011)

Download references

Acknowledgements

The authors acknowledge the financial support from UFABC, CNPq, CAPES, FAPESP, FAPERJ, and Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ). The warm hospitality of Instituto de Física de São Carlos—Universidade de São Paulo (IFSC-USP) and Centro Brasileiro de Pesquisas Físicas (CBPF), where the experiments were performed, is also acknowledge.

Author information

Correspondence to R. M. Serra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maziero, J., Auccaise, R., Céleri, L.C. et al. Quantum Discord in Nuclear Magnetic Resonance Systems at Room Temperature. Braz J Phys 43, 86–104 (2013). https://doi.org/10.1007/s13538-013-0118-1

Download citation

Keywords

  • Quantum information
  • Quantum discord
  • Nonclassical correlations
  • Nuclear magnetic resonance