Skip to main content
Log in

Design and validation of a low-cost photomodulator for in vivo photoactivation of a mGluR5 inhibitor

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose: Severe side effects prevent the utilization of otherwise promising drugs in treatments. These side effects arise when drugs affect untargeted tissues due to poor target specificity. In photopharmacology, light controls the timing and the location of drug delivery, improving treatment specificity and pharmacokinetic control. Photopharmaceuticals have not seen widespread adoption in part because researchers do not always have access to reliable and reproducible light delivery devices at prices which fit within the larger research budget. Method: In this work, we present a customizable photomodulator for use in both wearable and implantable devices. For experimental validation of the photomodulator, we photolyse JF-NP-26 in rats. Results: We successfully drive in vivo photopharmacology with a tethered photomodulator and demonstrate modifications which enable the photomodulator to operate wirelessly. Conclusion: By documenting our photomodulator development, we hope to introduce researchers to a simple solution which significantly lowers the engineering barriers to photopharmacology research.

Graphical abstract

Researchers present a photomodulator, a device designed to facilitate in vivo photopharmacology. They demonstrate the in vivo capabilities of the photomodulator by photoreleasing raseglurant, an mGluR5 inhibitor, to treat pain in an acute rat model and follow this study by showing how to reconfigure the photomodulator to work wirelessly and interface with other biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071. https://doi.org/10.1038/natrevmats.2016.71.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–56. https://doi.org/10.1016/j.addr.2016.02.006.

    Article  CAS  PubMed  Google Scholar 

  3. Tietze R, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–70. https://doi.org/10.1016/j.bbrc.2015.08.022.

    Article  CAS  PubMed  Google Scholar 

  4. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hüll K, Morstein J, Trauner D. In Vivo Photopharmacology. Chem Rev. 2018;118(21):10710–47. https://doi.org/10.1021/acs.chemrev.8b00037.

    Article  CAS  PubMed  Google Scholar 

  6. Pittolo S, et al. An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol. 2014;10(10):813–5. https://doi.org/10.1038/nchembio.1612.

    Article  CAS  PubMed  Google Scholar 

  7. Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–17. https://doi.org/10.1021/jacs.5b09974.

    Article  CAS  PubMed  Google Scholar 

  8. Dcona MM, Sheldon JE, Mitra D, Hartman MCT. Light induced drug release from a folic acid-drug conjugate. Bioorg Med Chem Lett. 2017;27(3):466–9. https://doi.org/10.1016/j.bmcl.2016.12.036.

    Article  CAS  PubMed  Google Scholar 

  9. Nani RR, Gorka AP, Nagaya T, Kobayashi H, Schnermann MJ. Near-IR light-mediated cleavage of antibody-drug conjugates using cyanine photocages. Angew Chem Int Ed. 2015;54(46):13635–8. https://doi.org/10.1002/anie.201507391.

    Article  CAS  Google Scholar 

  10. Izquierdo-Serra M, et al. Optical control of endogenous receptors and cellular excitability using targeted covalent photoswitches. Nat Commun. 2016;7(1):12221. https://doi.org/10.1038/ncomms12221.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci. 2019;20(9):514–32. https://doi.org/10.1038/s41583-019-0197-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Font J, et al. “Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. Elife. 2017;6:e23545. https://doi.org/10.7554/eLife.23545.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anikeeva P, et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci. 2012;15(1):163–70. https://doi.org/10.1038/nn.2992.

    Article  CAS  Google Scholar 

  14. Wang J, et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng. 2012;9(1): 016001. https://doi.org/10.1088/1741-2560/9/1/016001.

    Article  PubMed  Google Scholar 

  15. Kim T, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013;340(6129):211–6. https://doi.org/10.1126/science.1232437.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Jeong J-W, et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell. 2015;162(3):662–74. https://doi.org/10.1016/j.cell.2015.06.058.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee ST, Williams PA, Braine CE, Lin D-T, John SWM, Irazoqui PP. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans Neural Syst Rehabil Eng. 2015;23(4):655–64. https://doi.org/10.1109/TNSRE.2015.2391282.

    Article  PubMed  Google Scholar 

  18. M. Schwaerzle, P. Ringwald, O. Paul, and P. Ruther, (2017) “First dual-color optrode with bare laser diode chips directly butt-coupled to hybrid-polymer waveguides,” in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA: IEEE, pp. 526–529. doi: https://doi.org/10.1109/MEMSYS.2017.7863459.

  19. Shin G, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron. 2017;93(3):509-521.e3. https://doi.org/10.1016/j.neuron.2016.12.031.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qazi R, et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat Biomed Eng. 2019;3(8):655–69. https://doi.org/10.1038/s41551-019-0432-1.

    Article  PubMed  Google Scholar 

  21. Zhang Y, et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA. 2019;116(43):21427–37. https://doi.org/10.1073/pnas.1909850116.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Zhang Y, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv. 2019;5(7):eaaw5296. https://doi.org/10.1126/sciadv.aaw5296.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Sydney: Academic Pr; 1982.

    Google Scholar 

  24. Gong N, Huang Q, Chen Y, Xu M, Ma S, Wang Y-X. Pain assessment using the rat and mouse formalin tests. Bio-Protoc. 2014. https://doi.org/10.21769/BioProtoc.1288.

    Article  Google Scholar 

  25. Bhamra H, Tsai J-W, Huang Y-W, Yuan Q, Shah JV, Irazoqui P. A Subcubic millimeter wireless implantable intraocular pressure monitor microsystem. IEEE Trans Biomed Circuits Syst. 2017;11(6):1204–15. https://doi.org/10.1109/TBCAS.2017.2755596.

    Article  PubMed  Google Scholar 

  26. Pederson DJ, et al. The bionode: a closed-loop neuromodulation implant. ACM Trans Embed Comput Syst. 2019;18(1):1–20. https://doi.org/10.1145/3301310.

    Article  Google Scholar 

  27. Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: state of the art and future directions. Front Cardiovasc Med. 2022;9: 866957. https://doi.org/10.3389/fcvm.2022.866957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Newman JP, Fong M, Millard DC, Whitmire CJ, Stanley GB, Potter SM. Optogenetic feedback control of neural activity. Elife. 2015;4:e07192. https://doi.org/10.7554/eLife.07192.

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Sinicropi, “BIOMIMETIC PHOTOSWITCHES,” La Chimica & L’Industria, p. 8, Apr. 2010.

  30. Babii O, et al. “Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol? Future Drug Discovery. 2020;2(1):FDD28. https://doi.org/10.4155/fdd-2019-0033.

    Article  Google Scholar 

  31. Sansalone L, Bratsch-Prince J, Tang S, Captain B, Mott DD, Raymo FM. Photopotentiation of the GABA A receptor with caged diazepam. Proc Natl Acad Sci USA. 2019;116(42):21176–84. https://doi.org/10.1073/pnas.1902383116.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Trads JB, et al. Sign inversion in photopharmacology: incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers. Angew Chem Int Ed. 2019;58(43):15421–8. https://doi.org/10.1002/anie.201905790.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Yvonne Chen, Brett Collar, and Trevor Meyer, for fabrication and procedural assistance and Ryan Budde, Brett Collar, and Dr. Jay Shah for providing manuscript feedback. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures involving animals were performed in accordance with the ethical standards of the institution or practice at which the studies were conducted (PACUC Protocol #1807001777).

Funding

This research was funded by Eli Lilly and Company (Lilly) as part of the Connected Solutions research initiative between Lilly and Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ajieren.

Ethics declarations

Conflict of interest

H. Ajieren and P. Irazoqui have received royalties as part of a licensing agreement with Eli Lilly and are inventors on a patent application submitted by Eli Lilly for technology related to this research.

Ethical approval

All procedures involving animals occurred under protocol number 1807001777 as approved by the Institutional Animal Care and Use Committee of Purdue University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4326 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajieren, H., Fox, A., Biggs, E. et al. Design and validation of a low-cost photomodulator for in vivo photoactivation of a mGluR5 inhibitor. Biomed. Eng. Lett. 14, 245–254 (2024). https://doi.org/10.1007/s13534-023-00334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00334-3

Keywords

Navigation